def test_divergence(self, *args): learner = UserItemBaselineLearner() super().test_divergence(learner, filename=__dataset__)
def test_input_data_continuous(self, *args): learner = UserItemBaselineLearner(verbose=True) super().test_input_data_continuous(learner, filename=__dataset__)
def test_warnings(self, *args): learner = UserItemBaselineLearner() super().test_warnings(learner, filename=__dataset__)
def test_swap_columns(self, *args): learner = UserItemBaselineLearner() super().test_swap_columns(learner, filename1='ratings_dis.tab', filename2='ratings_dis_swap.tab')
def test_predict_items(self, *args): learner = UserItemBaselineLearner() super().test_predict_items(learner, filename=__dataset__)
def test_input_data_discrete(self, *args): learner = UserItemBaselineLearner() super().test_input_data_discrete(learner, filename='ratings_dis.tab')
from PyQt4.QtGui import QApplication from Orange.widgets.utils.owlearnerwidget import OWBaseLearner from orangecontrib.recommendation import UserItemBaselineLearner class OWUserItemBaseline(OWBaseLearner): # Widget needs a name, or it is considered an abstract widget # and not shown in the menu. name = "User-Item Baseline" description = 'This model takes the bias of users and items plus the ' \ 'global average to make predictions.' icon = "icons/user-item-baseline.svg" priority = 80 LEARNER = UserItemBaselineLearner if __name__ == '__main__': app = QApplication([]) widget = UserItemBaselineLearner() widget.show() app.exec()