def __init__(self,filename,color,cascade,READ_FILE):

        labeled=zip(filename,color)
        label=[]
        feature_train=[]

        for (fd,c) in labeled:
            print fd
            if READ_FILE is True:
                img=cv2.imread(fd,0)
            else:
                img = filename
            if img is None:
                print "image can't be loaded in face recog"
                sys.exit(0)
            face_cascade=cv2.CascadeClassifier(cascade)
            features=Feature_extractor(img)

            face=face_cascade.detectMultiScale(
                img,
                scaleFactor=1.1,
                minNeighbors=2,
                minSize=(10,10)
            )

            window=face[0]
            (x,y,w,h)=window


            #print "selectkp"
            #print window

            kp=features.keypoints()

            selectKp=features.select_kp(window)
            #print selectKp


            for (X,Y) in selectKp:
                plt.scatter(X,Y,color=c)
                label.append(c)
                feature_train.append([X,Y])


            #cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),1)

            #cv2.imshow("image",img)


        self.label=label
        self.feature_train=feature_train
__author__ = 'Abdullah_Rahman'


#r=kath
threshold=0.53



filenames=("aron.jpg","sharapova_test.jpg")
color=('r','b')
cascade="cascades/frontalface.xml"
C=KMeans(n_clusters=4)
face_cascade=cv2.CascadeClassifier(cascade)

image=cv2.imread("sharapova_test.jpg",0)
features=Feature_extractor(image)

if image is None:
    print "IMAGE NOT FOUND in input_image.py"
    sys.exit(0)



face=face_cascade.detectMultiScale(
    image,
    scaleFactor=1.1,
    minNeighbors=2,
    minSize=(400,400)
)

window=face[0]
示例#3
0
    return  zip([i for i in range(len(A))],A)



print "READING THE IMAGE FILE AND EXTRACTING KEYPOINTS"
input = cv2.imread("aron.jpg",0)
height = np.size(input,0)
width = np.size(input,1)
print height,width
cascade = cv2.CascadeClassifier('cascades/frontalface.xml')
model_filename = "TRAINED_SUPPORT_VECTOR_MACHINE.pkl"
model = pickle.load(open(model_filename,'rb'))



features = Feature_extractor(input)
pt = features.keypoints()

normalized=[(100*(x)/width,100*(y)/height) for (x,y) in pt]
pt=[(int(x),int(y)) for (x,y) in normalized]
print len(pt)

print "ANALYZING FEATURES"
Kp = np.asarray(pt)
segments = separate(Kp,50,50)
ratios = ratio_face(segments)

c ={1:'r',0:'b'}
X1=np.linspace(0,45,40)
Y1=np.linspace(0.5,1.5,40)
for x in X1: