示例#1
0
def large_area_id(jobs, buildings):
    job_la = "jobs_large_area_lookup"
    if (not orca.is_injectable(job_la)) or (len(orca.get_injectable(job_la)) == 0):
        orca.add_injectable(job_la,
                            misc.reindex(buildings.large_area_id, jobs.building_id),
                            autocall=False, cache=True)
    return orca.get_injectable(job_la).loc[jobs.index]
示例#2
0
def add_extra_columns(df):
    for col in ["residential_price", "non_residential_price"]:
        df[col] = 0

    if "deed_restricted_units" not in df.columns:
        df["deed_restricted_units"] = 0
    else:
        print "Number of deed restricted units built = %d" %\
            df.deed_restricted_units.sum()

    df["redfin_sale_year"] = 2012

    if "residential_units" not in df:
        df["residential_units"] = 0

    if "parcel_size" not in df:
        df["parcel_size"] = \
            orca.get_table("parcels").parcel_size.loc[df.parcel_id]

    if "year" in orca.orca._INJECTABLES and "year_built" not in df:
        df["year_built"] = orca.get_injectable("year")

    if "form_to_btype_func" in orca.orca._INJECTABLES and \
            "building_type_id" not in df:
        form_to_btype_func = orca.get_injectable("form_to_btype_func")
        df["building_type_id"] = df.apply(form_to_btype_func, axis=1)

    return df
示例#3
0
def get_simulation_models(SCENARIO):

    models = [
        "neighborhood_vars",            # local accessibility vars
        "regional_vars",                # regional accessibility vars

        "rsh_simulate",                 # residential sales hedonic
        "nrh_simulate",                 # non-residential rent hedonic

        "households_relocation",
        "households_transition",

        "jobs_relocation",
        "jobs_transition",

        "price_vars",

        "scheduled_development_events",  # scheduled buildings additions

        "lump_sum_accounts",             # run the subsidized acct system
        "subsidized_residential_developer_lump_sum_accts",

        "alt_feasibility",

        "residential_developer",
        "developer_reprocess",
        "retail_developer",
        "office_developer",

        "hlcm_simulate",                 # put these last so they don't get
        "elcm_simulate",                 # displaced by new dev

        "topsheet",
        "parcel_summary",
        "building_summary",
        "diagnostic_output",
        "geographic_summary",
        "travel_model_output"
    ]

    # calculate VMT taxes
    if SCENARIO in ["1", "3", "4"]:
        # calculate the vmt fees at the end of the year

        # note that you might also have to change the fees that get
        # imposed - look for fees_per_unit column in variables.py
        if SCENARIO == "3":
            orca.get_injectable("settings")["vmt_fee_res"] = True
        if SCENARIO == "1":
            orca.get_injectable("settings")["vmt_fee_com"] = True
        if SCENARIO == "4":
            orca.get_injectable("settings")["vmt_fee_com"] = True
        models.insert(models.index("diagnostic_output"),
                      "calculate_vmt_fees")
        models.insert(models.index("alt_feasibility"),
                      "subsidized_residential_feasibility")
        models.insert(models.index("alt_feasibility"),
                      "subsidized_residential_developer_vmt")

    return models
示例#4
0
def subsidized_residential_feasibility(parcels, settings,
                                       add_extra_columns_func,
                                       parcel_sales_price_sqft_func,
                                       parcel_is_allowed_func,
                                       parcels_geography):

    kwargs = settings['feasibility'].copy()
    kwargs["only_built"] = False
    kwargs["forms_to_test"] = ["residential"]
    # step 1
    utils.run_feasibility(parcels, parcel_sales_price_sqft_func,
                          parcel_is_allowed_func, **kwargs)

    feasibility = orca.get_table("feasibility").to_frame()
    # get rid of the multiindex that comes back from feasibility
    feasibility = feasibility.stack(level=0).reset_index(level=1, drop=True)
    # join to parcels_geography for filtering
    feasibility = feasibility.join(parcels_geography.to_frame())

    # add the multiindex back
    feasibility.columns = pd.MultiIndex.from_tuples([
        ("residential", col) for col in feasibility.columns
    ])

    feasibility = policy_modifications_of_profit(feasibility, parcels)

    orca.add_table("feasibility", feasibility)

    df = orca.get_table("feasibility").to_frame()
    df = df.stack(level=0).reset_index(level=1, drop=True)
    df.to_csv("runs/run{}_feasibility_{}.csv".format(
        orca.get_injectable("run_number"), orca.get_injectable("year")))
示例#5
0
def subsidized_residential_feasibility(
        parcels, settings,
        add_extra_columns_func, parcel_sales_price_sqft_func,
        parcel_is_allowed_func, parcels_geography):

    kwargs = settings['feasibility'].copy()
    kwargs["only_built"] = False
    kwargs["forms_to_test"] = ["residential"]
    # step 1
    utils.run_feasibility(parcels,
                          parcel_sales_price_sqft_func,
                          parcel_is_allowed_func,
                          **kwargs)

    feasibility = orca.get_table("feasibility").to_frame()
    # get rid of the multiindex that comes back from feasibility
    feasibility = feasibility.stack(level=0).reset_index(level=1, drop=True)
    # join to parcels_geography for filtering
    feasibility = feasibility.join(parcels_geography.to_frame())

    # add the multiindex back
    feasibility.columns = pd.MultiIndex.from_tuples(
            [("residential", col) for col in feasibility.columns])

    feasibility = policy_modifications_of_profit(feasibility, parcels)

    orca.add_table("feasibility", feasibility)

    df = orca.get_table("feasibility").to_frame()
    df = df.stack(level=0).reset_index(level=1, drop=True)
    df.to_csv("runs/run{}_feasibility_{}.csv".format(
        orca.get_injectable("run_number"),
        orca.get_injectable("year")))
示例#6
0
def parcel_is_allowed(form):
    settings = orca.get_injectable("settings")
    mapping = orca.get_injectable("mapping")
    form_to_btype = mapping["form_to_btype"]

    # we have zoning by building type but want
    # to know if specific forms are allowed
    zoning_baseline = orca.get_table("zoning_baseline")
    zoning_scenario = orca.get_table("zoning_scenario")
    parcels = orca.get_table("parcels")

    allowed = pd.Series(0, index=parcels.index)

    # first, it's allowed if any building type that matches
    # the form is allowed
    for typ in form_to_btype[form]:
        allowed |= zoning_baseline[typ]

    # then we override it with any values that are specified in the scenarios
    # i.e. they come from the add_bldg and drop_bldg columns
    for typ in form_to_btype[form]:
        allowed = zoning_scenario[typ].combine_first(allowed)

    # notice there is some dependence on ordering here.  basically values take
    # precedent that occur LAST in the form_to_btype mapping

    # this is a fun modification - when we get too much retail in jurisdictions
    # we can just eliminate all retail
    if "eliminate_retail_zoning_from_juris" in settings and form == "retail":
        allowed *= ~orca.get_table("parcels").juris.isin(
            settings["eliminate_retail_zoning_from_juris"])

    return allowed.astype("bool")
示例#7
0
    def get_dynamic_filepath(self):
        """
        Substitute run id, model iteration, and/or timestamp into the filename. 
        
        For the run id and model iteration, we look for Orca injectables named ``run_id`` 
        and ``iter_var``, respectively. If none is found, we use ``0``.
        
        The timestamp is UTC, formatted as ``YYYYMMDD-HHMMSS``.
        
        Returns
        -------
        str
        
        """
        if self.path is None:
            raise ValueError("Please provide a file path")

        run = 0
        if orca.is_injectable('run_id'):
            run = orca.get_injectable('run_id')

        iter = 0
        if orca.is_injectable('iter_var'):
            iter = orca.get_injectable('iter_var')

        ts = datetime.datetime.utcnow().strftime('%Y%m%d-%H%M%S')

        s = self.path
        s = s.replace('%RUN%', str(run))
        s = s.replace('%ITER%', str(iter))
        s = s.replace('%TS%', ts)

        return s
示例#8
0
def parcel_is_allowed(form):
    settings = orca.get_injectable('settings')
    form_to_btype = settings["form_to_btype"]
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [orca.get_table('zoning_baseline')
               ['type%d' % typ] > 0 for typ in form_to_btype[form]]

    # also check if the scenario based zoning adds the building type
    allowed2 = [orca.get_table('zoning_scenario')
                ['add-type%d' % typ] > 0 for typ in form_to_btype[form]]

    allowed = allowed + allowed2

    allowed = pd.concat(allowed, axis=1).max(axis=1).\
        reindex(orca.get_table('parcels').index).fillna(False)

    # also check if the scenario based zoning drops the building type
    # NOTE THAT DROPPING OVERRIDES ADDING!
    disallowed = [orca.get_table('zoning_scenario')
                  ['drop-type%d' % typ] > 0 for typ in form_to_btype[form]]

    disallowed = pd.concat(disallowed, axis=1).max(axis=1).\
        reindex(orca.get_table('parcels').index).fillna(False)

    allowed = allowed.astype('bool') & ~disallowed

    settings = orca.get_injectable("settings")
    if "eliminate_retail_zoning_from_juris" in settings and form == "retail":
        allowed *= ~orca.get_table("parcels").juris.isin(
            settings["eliminate_retail_zoning_from_juris"])

    return allowed.astype("bool")
示例#9
0
def add_extra_columns_func(df):
    for col in ["residential_price", "non_residential_price"]:
        df[col] = 0

    if "deed_restricted_units" not in df.columns:
        df["deed_restricted_units"] = 0
    else:
        print "Number of deed restricted units built = %d" %\
            df.deed_restricted_units.sum()

    df["redfin_sale_year"] = 2012
    df["redfin_sale_price"] = np.nan

    if "residential_units" not in df:
        df["residential_units"] = 0

    if "parcel_size" not in df:
        df["parcel_size"] = \
            orca.get_table("parcels").parcel_size.loc[df.parcel_id]

    if "year" in orca.orca._INJECTABLES and "year_built" not in df:
        df["year_built"] = orca.get_injectable("year")

    if "form_to_btype_func" in orca.orca._INJECTABLES and \
            "building_type" not in df:
        form_to_btype_func = orca.get_injectable("form_to_btype_func")
        df["building_type"] = df.apply(form_to_btype_func, axis=1)

    return df
示例#10
0
def get_simulation_models(SCENARIO):

    models = [
        "neighborhood_vars",  # local accessibility vars
        "regional_vars",  # regional accessibility vars
        "rsh_simulate",  # residential sales hedonic
        "nrh_simulate",  # non-residential rent hedonic
        "households_relocation",
        "households_transition",
        "jobs_relocation",
        "jobs_transition",
        "price_vars",
        "scheduled_development_events",  # scheduled buildings additions
        "lump_sum_accounts",  # run the subsidized acct system
        "subsidized_residential_developer_lump_sum_accts",
        "alt_feasibility",
        "residential_developer",
        "developer_reprocess",
        "office_developer",
        "retail_developer",
        "additional_units",
        "hlcm_simulate",  # put these last so they don't get
        "proportional_elcm",  # start with a proportional jobs model
        "elcm_simulate",  # displaced by new dev
        "topsheet",
        "parcel_summary",
        "building_summary",
        "diagnostic_output",
        "geographic_summary",
        "travel_model_output"
    ]

    # calculate VMT taxes
    if SCENARIO in ["1", "3", "4"]:
        # calculate the vmt fees at the end of the year

        # note that you might also have to change the fees that get
        # imposed - look for fees_per_unit column in variables.py

        if SCENARIO == "3":
            orca.get_injectable("settings")["vmt_res_for_res"] = True

        if SCENARIO == "1":
            orca.get_injectable("settings")["vmt_com_for_res"] = True

        if SCENARIO == "4":
            orca.get_injectable("settings")["vmt_com_for_res"] = True
            orca.get_injectable("settings")["vmt_com_for_com"] = False

            models.insert(models.index("office_developer"),
                          "subsidized_office_developer")

        models.insert(models.index("diagnostic_output"), "calculate_vmt_fees")
        models.insert(models.index("alt_feasibility"),
                      "subsidized_residential_feasibility")
        models.insert(models.index("alt_feasibility"),
                      "subsidized_residential_developer_vmt")

    return models
def year():
    try:
        if orca.get_injectable("iter_var") is not None:
            return orca.get_injectable("iter_var")
    except:
        pass
    # if we're not running simulation, return base year
    return 2010
示例#12
0
def preload_injectables():

    t0 = print_elapsed_time()

    # load skim_stack
    if orca.is_injectable('preload_injectables'):
        orca.get_injectable('preload_injectables')

    t0 = print_elapsed_time("preload_injectables", t0)
示例#13
0
def interaction_trace_rows(interaction_df, choosers):
    """
    Trace model design for interaction_simulate

    Parameters
    ----------
    model_design: pandas.DataFrame
        traced model_design dataframe
    choosers: pandas.DataFrame
        interaction_simulate choosers
        (needed to filter the model_design dataframe by traced hh or person id)

    Returns
    -------
    trace_rows : numpy.ndarray
        array of booleans to select values in eval_interaction_utilities df to trace

    trace_ids : tuple (str,  numpy.ndarray)
        column name and array of trace_ids for use by


    """

    # slicer column name and id targets to use for chooser id added to model_design dataframe
    # currently we only ever slice by person_id, but that could change, so we check here...

    if choosers.index.name == 'PERID' \
            or choosers.index.name == orca.get_injectable('persons_index_name'):
        slicer_column_name = choosers.index.name
        targets = orca.get_injectable('trace_person_ids')
    elif (choosers.index.name == 'tour_id' and 'person_id' in choosers.columns):
        slicer_column_name = 'person_id'
        targets = orca.get_injectable('trace_person_ids')
    else:
        raise RuntimeError("trace_interaction_model_design don't know how to slice index '%s'"
                           % choosers.index.name)

    # we can deduce the sample_size from the relative size of model_design and choosers
    # (model design rows are repeated once for each alternative)
    sample_size = len(interaction_df.index) / len(choosers.index)

    if slicer_column_name == choosers.index.name:
        trace_rows = np.in1d(choosers.index, targets)
        trace_ids = np.asanyarray(choosers[trace_rows].index)
    else:
        trace_rows = np.in1d(choosers['person_id'], targets)
        trace_ids = np.asanyarray(choosers[trace_rows].person_id)

    trace_rows = np.repeat(trace_rows, sample_size)
    trace_ids = np.repeat(trace_ids, sample_size)

    assert type(trace_rows) == np.ndarray
    assert type(trace_ids) == np.ndarray

    trace_ids = (slicer_column_name, trace_ids)

    return trace_rows, trace_ids
示例#14
0
def large_area_id(households, buildings):
    hh_la = "households_large_area_lookup"
    if (not orca.is_injectable(hh_la)) or (len(orca.get_injectable(hh_la))
                                           == 0):
        orca.add_injectable(hh_la,
                            misc.reindex(buildings.large_area_id,
                                         households.building_id),
                            autocall=False,
                            cache=True)
    return orca.get_injectable(hh_la).loc[households.index]
示例#15
0
def generate_indicators(year, forecast_year, parcels, zones):
    # If iter_var is not defined is a presimulation generation
    if orca.get_injectable('iter_var'):
        year = orca.get_injectable('iter_var')
    else:
        year = orca.get_injectable('base_year')

    # General output indicators
    cfg = orca.get_injectable('output_parameters')['output_variables']
    zone_ind = zones.to_frame(cfg['zones'])
    zone_ind = zone_ind.reindex(sorted(zone_ind.columns), axis=1)
    parcel_ind = parcels.to_frame(cfg['parcels'])
    parcel_ind = parcel_ind.reindex(sorted(parcel_ind.columns), axis=1)
    zone_ind.to_csv('./runs/zone_indicators_%s.csv' % year)
    parcel_ind.to_csv('./runs/parcel_indicators_%s.csv' % year)

    # Output indicators by building type
    btype_columns = [
        'building_type_id', 'is_residential', 'is_non_residential'
    ]
    btypes = orca.get_table('building_types').to_frame(btype_columns)
    btypes = btypes.reset_index()
    btypes.loc[btypes['is_residential']==True, 'ind_res'] = \
        "sum_residential_units_" + btypes.building_type_id.astype(str)
    btypes.loc[btypes['is_non_residential'] == True, 'ind_non_res'] = \
        "sum_non_residential_sqft_" + btypes.building_type_id.astype(str)
    btype_ind_cols = list(btypes.ind_res) + list(btypes.ind_non_res)
    btype_ind_cols = [ind for ind in btype_ind_cols if str(ind) != 'nan']
    zone_type = zones.to_frame(btype_ind_cols)
    parcel_type = parcels.to_frame(btype_ind_cols)
    zone_type = zone_type.reindex(sorted(zone_type.columns), axis=1)
    parcel_type = parcel_type.reindex(sorted(parcel_type.columns), axis=1)
    zone_type.to_csv('./runs/zone_indicators_building_type_%s.csv' % year)
    parcel_type.to_csv('./runs/parcel_indicators_building_type_%s.csv' % year)

    # Generate chart indicators
    if year == forecast_year:
        vdict, cdict = export_indicator_definitions()
        data, variables, geo_small, geo_large, custom_v = prepare_chart_data()
        for table in custom_v:
            for var in custom_v[table]:
                gen_custom_barchart(table, var)
        used_variables = []
        for aggtype in ['sum', 'mean']:
            for var in variables[aggtype]:
                print('Generating charts for ' + var)
                gen_var_barcharts_by_geo(data, var, aggtype, geo_large)
                gen_var_histograms(data, var, aggtype, geo_small, vdict, cdict)
                gen_barcharts_n_largest(data, var, aggtype, geo_small, 10)
                used_variables = used_variables + [var]
                for aggtype2 in ['sum', 'mean']:
                    for var2 in variables[aggtype2]:
                        if (var != var2) & (var2 not in used_variables):
                            gen_var_scatters(data, var, var2, aggtype,
                                             aggtype2, 'zone_id', geo_large)
示例#16
0
def close():
    """
    Close any known open files
    """

    close_open_files()

    orca.get_injectable('pipeline_store').close()
    orca.add_injectable('pipeline_store', None)

    logger.info("close_pipeline")
示例#17
0
def skims():
    skims = skim.Skims()
    # FIXME - this is reusing the same skim as all the different kinds of skims
    for typ in ["SOV_TIME", "SOVTOLL_TIME", "HOV2_TIME",
                "SOV_DIST", "SOVTOLL_DIST", "HOV2_DIST",
                "SOV_BTOLL", "SOVTOLL_BTOLL", "HOV2_BTOLL",
                "SOVTOLL_VTOLL"]:
        for period in ["AM", "MD", "PM"]:
            skims[(typ, period)] = orca.get_injectable("distance_skim")
    skims['DISTANCE'] = orca.get_injectable("distance_skim")
    return skims
示例#18
0
def get_config_file(type):
    configs = orca.get_injectable('inputs')['model_configs'][type.split('_')
                                                             [0]]
    sc = orca.get_injectable('scenario')
    sc_cfg = 's{}_{}_config'.format(sc, type)
    gen_cfg = '{}_config'.format(type)
    if sc_cfg in configs:
        return configs[sc_cfg]
    elif gen_cfg in configs:
        return configs[gen_cfg]
    else:
        return '{}.yaml'.format(type)
示例#19
0
def get_control_file(type):
    controls = orca.get_injectable('inputs')['control_tables'][type]
    sc = orca.get_injectable('scenario')
    sc_file = 's{}_{}_controls_input_file'.format(sc, type)
    gen_file = '{}_controls_input_file'.format(type)
    if sc_file in controls:
        fname = controls[sc_file]
    elif gen_file in controls:
        fname = controls[gen_file]
    else:
        fname = '{}_controls.csv'.format(type)
    return fname
示例#20
0
def config_logger(custom_config_file=None, basic=False):
    """
    Configure logger

    if log_config_file is not supplied then look for conf file in configs_dir

    if not found use basicConfig

    Parameters
    ----------
    custom_config_file: str
        custom config filename
    basic: boolean
        basic setup

    Returns
    -------
    Nothing
    """
    log_config_file = None

    if custom_config_file and os.path.isfile(custom_config_file):
        log_config_file = custom_config_file
    elif not basic:
        # look for conf file in configs_dir
        configs_dir = orca.get_injectable('configs_dir')
        default_config_file = os.path.join(configs_dir, LOGGING_CONF_FILE_NAME)
        if os.path.isfile(default_config_file):
            log_config_file = default_config_file

    if log_config_file:
        with open(log_config_file) as f:
            config_dict = yaml.load(f)
            config_dict = config_dict['logging']
            config_dict.setdefault('version', 1)
            logging.config.dictConfig(config_dict)
    else:
        logging.basicConfig(level=logging.INFO, stream=sys.stdout)

    logger = logging.getLogger(ASIM_LOGGER)

    if custom_config_file and not os.path.isfile(custom_config_file):
        logger.error("#\n#\n#\nconfig_logger could not find conf file '%s'" % custom_config_file)

    if log_config_file:
        logger.info("Read logging configuration from: %s" % log_config_file)
    else:
        print "Configured logging using basicConfig"
        logger.info("Configured logging using basicConfig")

    output_dir = orca.get_injectable('output_dir')
    logger.info("Deleting files in output_dir %s" % output_dir)
    delete_csv_files(output_dir)
示例#21
0
def get_config_file(type):
    configs = orca.get_injectable('settings')['model_configs'][type.
                                                               split('_')[0]]
    sc = orca.get_injectable('scenario')
    sc_cfg = '{}_{}_config'.format(sc, type)
    gen_cfg = '{}_config'.format(type)
    if sc_cfg in configs:
        return configs[sc_cfg]
    elif gen_cfg in configs:
        return configs[gen_cfg]
    else:
        return '{}.yaml'.format(type)
示例#22
0
def get_control_file(type):
    controls = orca.get_injectable('settings')['control_tables'][type]
    sc = orca.get_injectable('scenario')
    sc_file = 's{}_{}_controls_input_file'.format(sc, type)
    gen_file = '{}_controls_input_file'.format(type)
    if sc_file in controls:
        fname = controls[sc_file]
    elif gen_file in controls:
        fname = controls[gen_file]
    else:
        fname = '{}_controls.csv'.format(type)
    return fname
示例#23
0
def assert_injectable_can_be_generated(injectable_name):
    """
    Can an _InjectableFuncWrapper be evaluated without errors?
    
    (The Orca documentation appears inconsistent, but orca.get_injectable() *does* attempt
    to evaluate wrapped functions, and returns the result.)
    
    Parameters
    ----------
    injectable_name : str
    
    Returns
    -------
    None
    
    """
    assert_injectable_is_registered(injectable_name)

    if orca.injectable_type(injectable_name) == 'function':
        try:
            _ = orca.get_injectable(injectable_name)
        except:
            # TODO: issues #3 log backtrace
            msg = "Injectable '%s' is registered but cannot be evaluated" % injectable_name
            raise OrcaAssertionError(msg)
    return
示例#24
0
文件: data.py 项目: psrc/urbansim2
def year(base_year):
    if 'iter_var' in orca.list_injectables():
        year = orca.get_injectable('iter_var')
        if year is not None:
            return year
    # outside of a run, return the base/default
    return base_year
示例#25
0
def cost_shifter_callback(self, form, df, costs):
    """
    Multiplies total_development costs (already including planning costs) by
    cost shifter values defined in cost_shifters.yaml by zone_district_id. This
    is done for calibration purposes
    ----------
    form : str
        The name of the form.
    df: DataFrame
        Dataframe of allowed site proposals.
    costs: Array
        Array of total_development costs, already considering planning-related
        costs.
    Returns
    -------
    Array of total_development_costs including planning_costs and multiplied by
    cost shifters
    """

    shifter_cfg = orca.get_injectable('cost_shifters')['calibration']
    geography = shifter_cfg['calibration_geography_id']
    shift_type = 'residential' if form == 'residential' else 'non_residential'
    shifters = shifter_cfg['proforma_cost_shifters'][shift_type]
    for geo, geo_df in df.reset_index().groupby(geography):
        shifter = shifters[geo]
        costs[:, geo_df.index] *= shifter
    return costs
示例#26
0
def get_development_projects():
    conn_string = orca.get_injectable('conn_string')
    if len(conn_string) == 0:
        print 'A "conn_string" injectable must be registered and populated. Skipping export-to-Urban-Canvas.'
        return None
    conn = psycopg2.connect(conn_string)
    cur = conn.cursor()

    print "Loading committed development projects table"
    devproj_query = "select id, placetype_id as building_type_id, duration, buildings_number, average_floors as stories, sqft as non_residential_sqft, sqft_unit as sqft_per_unit, units as residential_units, Name as name, start_date from developmentprojects where committed = 'TRUE';"
    devproj = sql.read_frame(devproj_query,conn)
    devproj['year_built'] = devproj.start_date.astype('object').astype('str')
    devproj.year_built = devproj.year_built.str.slice(start=0, stop=4)
    devproj.year_built = devproj.year_built.astype('int')

    print "Loading development project parcels"
    dp_pcl_query = "select developmentprojects_parcels.development_project, developmentprojects_parcels.parcel_id, parcel.parcel_acres from developmentprojects_parcels, parcel where developmentprojects_parcels.parcel_id = parcel.parcel_id;"
    dp_pcl = sql.read_frame(dp_pcl_query, conn)
    devproject_parcel_ids = dp_pcl.groupby('development_project').parcel_id.max().reset_index()  ##In future, use the parcel_acres field on this tbl too

    scheduled_development_events = pd.merge(devproject_parcel_ids, devproj, left_on='development_project', right_on='id')
    scheduled_development_events = scheduled_development_events.rename(columns={'development_project':'scheduled_development_event_id',
                                                                                'building_type_id':'development_type_id'})
    scheduled_development_events = scheduled_development_events[['scheduled_development_event_id', 'year_built', 'development_type_id', 'stories', u'non_residential_sqft', 'sqft_per_unit', 'residential_units', 'parcel_id']]
    for col in scheduled_development_events:
        scheduled_development_events[col] = scheduled_development_events[col].astype('int')

    return scheduled_development_events
示例#27
0
def parcel_is_allowed(form):
    settings = orca.get_injectable("settings")
    form_to_btype = settings["form_to_btype"]

    # we have zoning by building type but want
    # to know if specific forms are allowed
    zoning_baseline = orca.get_table("zoning_baseline")
    zoning_scenario = orca.get_table("zoning_scenario")
    parcels = orca.get_table("parcels")

    allowed = pd.Series(0, index=parcels.index)

    # first, it's allowed if any building type that matches
    # the form is allowed
    for typ in form_to_btype[form]:
        allowed |= zoning_baseline[typ]

    # then we override it with any values that are specified in the scenarios
    # i.e. they come from the add_bldg and drop_bldg columns
    for typ in form_to_btype[form]:
        allowed = zoning_scenario[typ].combine_first(allowed)

    # notice there is some dependence on ordering here.  basically values take
    # precedent that occur LAST in the form_to_btype mapping

    # this is a fun modification - when we get too much retail in jurisdictions
    # we can just eliminate all retail
    if "eliminate_retail_zoning_from_juris" in settings and form == "retail":
        allowed *= ~orca.get_table("parcels").juris.isin(
            settings["eliminate_retail_zoning_from_juris"])

    return allowed.astype("bool")
示例#28
0
def year():
    try:
        return orca.get_injectable("iter_var")
    except Exception as e:
        pass
    # if we're not running simulation, return base year
    return 2014
示例#29
0
def open_pipeline_store(overwrite=False):
    """
    Open the pipeline checkpoint store and add an orca injectable to access it

    Parameters
    ----------
    overwrite : bool
        delete file before opening (unless resuming)
    """

    if orca.is_injectable('pipeline_store'):
        raise RuntimeError("Pipeline store is already open!")

    pipeline_file_path = orca.get_injectable('pipeline_path')

    if overwrite:
        try:
            if os.path.isfile(pipeline_file_path):
                logger.debug("removing pipeline store: %s" %
                             pipeline_file_path)
                os.unlink(pipeline_file_path)
        except Exception as e:
            print(e)
            logger.warn("Error removing %s: %s" % (e, ))

    store = pd.HDFStore(pipeline_file_path, mode='a')

    orca.add_injectable('pipeline_store', store)

    logger.debug("opened pipeline_store")
示例#30
0
def year():
    try:
        return orca.get_injectable("iter_var")
    except:
        pass
    # if we're not running simulation, return base year
    return 2014
示例#31
0
def get_checkpoints():
    """
    Get pandas dataframe of info about all checkpoints stored in pipeline

    Returns
    -------
    checkpoints_df : pandas.DataFrame

    """

    store = get_pipeline_store()

    if store:
        df = store[_CHECKPOINT_TABLE_NAME]
    else:
        pipeline_file_path = orca.get_injectable('pipeline_path')
        df = pd.read_hdf(pipeline_file_path, _CHECKPOINT_TABLE_NAME)

    # non-table columns first (column order in df is random because created from a dict)
    table_names = [
        name for name in df.columns.values if name not in _NON_TABLE_COLUMNS
    ]

    df = df[[_CHECKPOINT_NAME, _TIMESTAMP] + table_names]
    df.index.name = 'step_num'

    return df
def full_run(preload_3d_skims, chunk_size=0,
             households_sample_size=HOUSEHOLDS_SAMPLE_SIZE,
             trace_hh_id=None, trace_od=None, check_for_variability=None):

    configs_dir = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'example', 'configs')
    orca.add_injectable("configs_dir", configs_dir)

    data_dir = os.path.join(os.path.dirname(__file__), 'data')
    orca.add_injectable("data_dir", data_dir)

    output_dir = os.path.join(os.path.dirname(__file__), 'output')
    orca.add_injectable("output_dir", output_dir)

    inject_settings(configs_dir,
                    households_sample_size=households_sample_size,
                    preload_3d_skims=preload_3d_skims,
                    chunk_size=chunk_size,
                    trace_hh_id=trace_hh_id,
                    trace_od=trace_od,
                    check_for_variability=check_for_variability)

    orca.add_injectable("set_random_seed", set_random_seed)

    orca.clear_cache()

    tracing.config_logger()

    # grab some of the tables
    orca.get_table("land_use").to_frame().info()
    orca.get_table("households").to_frame().info()
    orca.get_table("persons").to_frame().info()

    assert len(orca.get_table("households").index) == HOUSEHOLDS_SAMPLE_SIZE
    assert orca.get_injectable("chunk_size") == chunk_size

    # run the models in the expected order
    orca.run(["compute_accessibility"])
    orca.run(["school_location_simulate"])
    orca.run(["workplace_location_simulate"])
    orca.run(["auto_ownership_simulate"])
    orca.run(["cdap_simulate"])
    orca.run(['mandatory_tour_frequency'])
    orca.get_table("mandatory_tours").tour_type.value_counts()
    orca.run(['non_mandatory_tour_frequency'])
    orca.get_table("non_mandatory_tours").tour_type.value_counts()
    orca.run(["destination_choice"])
    orca.run(["mandatory_scheduling"])
    orca.run(["non_mandatory_scheduling"])
    orca.run(["patch_mandatory_tour_destination"])
    orca.run(["tour_mode_choice_simulate"])
    orca.run(["trip_mode_choice_simulate"])

    tours_merged = orca.get_table("tours_merged").to_frame()

    tour_count = len(tours_merged.index)

    orca.clear_cache()

    return tour_count
示例#33
0
def parcel_is_allowed(form):
    form_to_btype = orca.get_injectable("form_to_btype")
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [orca.get_table('zoning_baseline')
               ['type%d' % typ] == 't' for typ in form_to_btype[form]]
    return pd.concat(allowed, axis=1).max(axis=1).\
        reindex(orca.get_table('parcels').index).fillna(False)
示例#34
0
def injectable_repr(inj_name):
    """
    Returns the type and repr of an injectable. JSON response has
    "type" and "repr" keys.

    """
    i = orca.get_injectable(inj_name)
    return jsonify(type=str(type(i)), repr=repr(i))
示例#35
0
def ciacre(parcels, taz):
    f = orca.get_injectable('parcel_first_building_type_is')
    s = f('select_non_residential')
    s1 = parcels.get_column('zone_id')
    s2 = parcels.parcel_acres * s
    df = pd.DataFrame(data={'zone_id': s1, 'ciacre': s2})
    s3 = df.groupby('zone_id').ciacre.sum()
    return s3
示例#36
0
def resacre(parcels):
    f = orca.get_injectable('parcel_first_building_type_is')
    s = f('residential') | f('mixedresidential')
    s1 = parcels.get_column('zone_id')
    s2 = parcels.parcel_acres * s
    df = pd.DataFrame(data={'zone_id': s1, 'residential_acres': s2})
    s3 = df.groupby('zone_id').residential_acres.sum()
    return s3
示例#37
0
def get_pipeline_store():
    """
    Return the open pipeline hdf5 checkpoint store or return False if it not been opened
    """
    if orca.is_injectable('pipeline_store'):
        return orca.get_injectable('pipeline_store')
    else:
        return None
示例#38
0
文件: server.py 项目: AZMAG/orca
def injectable_repr(inj_name):
    """
    Returns the type and repr of an injectable. JSON response has
    "type" and "repr" keys.

    """
    i = orca.get_injectable(inj_name)
    return jsonify(type=str(type(i)), repr=repr(i))
示例#39
0
def resacre(parcels):
    f = orca.get_injectable('parcel_first_building_type_is')
    s = f('residential') | f('mixedresidential')
    s1 = parcels.get_column('zone_id')
    s2 = parcels.parcel_acres * s
    df = pd.DataFrame(data={'zone_id': s1, 'residential_acres': s2})
    s3 = df.groupby('zone_id').residential_acres.sum()
    return s3
示例#40
0
def ciacre(parcels, taz):
    f = orca.get_injectable('parcel_first_building_type_is')
    s = f('select_non_residential')
    s1 = parcels.get_column('zone_id')
    s2 = parcels.parcel_acres * s
    df = pd.DataFrame(data={'zone_id': s1, 'ciacre': s2})
    s3 = df.groupby('zone_id').ciacre.sum()
    return s3
 def craigslist():
     df = pd.read_csv(os.path.join(misc.data_dir(), "sfbay_craigslist.csv"))
     net = orca.get_injectable('net')
     df['node_id'] = net['walk'].get_node_ids(df['lon'], df['lat'])
     df['tmnode_id'] = net['drive'].get_node_ids(df['lon'], df['lat'])
     # fill nans -- missing bedrooms are mostly studio apts
     df['bedrooms'] = df.bedrooms.replace(np.nan, 1)
     df['neighborhood'] = df.neighborhood.replace(np.nan, '')
     return df
示例#42
0
def get_step_arg(arg_name, default=_NO_DEFAULT):

    args = orca.get_injectable('step_args')

    assert isinstance(args, dict)
    if arg_name not in args and default == _NO_DEFAULT:
        raise "step arg '%s' not found and no default" % arg_name

    return args.get(arg_name, default)
示例#43
0
 def craigslist():
     df = pd.read_csv(os.path.join(misc.data_dir(), "sfbay_craigslist.csv"))
     net = orca.get_injectable('net')
     df['node_id'] = net['walk'].get_node_ids(df['lon'], df['lat'])
     df['tmnode_id'] = net['drive'].get_node_ids(df['lon'], df['lat'])
     # fill nans -- missing bedrooms are mostly studio apts
     df['bedrooms'] = df.bedrooms.replace(np.nan, 1)
     df['neighborhood'] = df.neighborhood.replace(np.nan, '')
     return df
示例#44
0
def add_extra_columns_func(df):
    df['source'] = 'developer_model'

    for col in ["residential_price", "non_residential_rent"]:
        df[col] = 0

    if "deed_restricted_units" not in df.columns:
        df["deed_restricted_units"] = 0
    else:
        print("Number of deed restricted units built = %d" %
              df.deed_restricted_units.sum())
    df["preserved_units"] = 0.0

    if "inclusionary_units" not in df.columns:
        df["inclusionary_units"] = 0
    else:
        print("Number of inclusionary units built = %d" %
              df.inclusionary_units.sum())

    if "subsidized_units" not in df.columns:
        df["subsidized_units"] = 0
    else:
        print("Number of subsidized units built = %d" %
              df.subsidized_units.sum())

    df["redfin_sale_year"] = 2012
    df["redfin_sale_price"] = np.nan

    if "residential_units" not in df:
        df["residential_units"] = 0

    if "parcel_size" not in df:
        df["parcel_size"] = \
            orca.get_table("parcels").parcel_size.loc[df.parcel_id]

    if orca.is_injectable("year") and "year_built" not in df:
        df["year_built"] = orca.get_injectable("year")

    if orca.is_injectable("form_to_btype_func") and \
            "building_type" not in df:
        form_to_btype_func = orca.get_injectable("form_to_btype_func")
        df["building_type"] = df.apply(form_to_btype_func, axis=1)

    return df
示例#45
0
def parcel_is_allowed(form):
    form_to_btype = orca.get_injectable("form_to_btype")
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [
        orca.get_table('zoning_baseline')['type%d' % typ] == 't'
        for typ in form_to_btype[form]
    ]
    return pd.concat(allowed, axis=1).max(axis=1).\
        reindex(orca.get_table('parcels').index).fillna(False)
示例#46
0
def year():
    default_year = 2015
    try:
        iter_var = orca.get_injectable('iter_var')
        if iter_var is not None:
            return iter_var
        else:
            return default_year
    except:
        return default_year
示例#47
0
def get_logsum_file(type='mandatory'):
    logsums = orca.get_injectable('settings')['logsums'][type]
    sc = orca.get_injectable('scenario')
    yr = orca.get_injectable('year')
    try:
        prev_type = orca.get_injectable('previous_{}_logsum_type'.format(type))
        if prev_type == 'generic':
            return orca.get_injectable('previous_{}_logsum_file'.format(type))
        elif prev_type == 'year':
            if 'logsum_{}'.format(yr) in logsums:
                ls = logsums['logsum_{}'.format(yr)]
                orca.add_injectable('previous_{}_logsum_file'.format(type), ls)
                return ls
            else:
                return orca.get_injectable('previous_{}_logsum_file'
                                           .format(type))
        elif prev_type == 'scenario':
            if 'logsum_s{}'.format(sc) in logsums:
                ls = logsums['logsum_s{}'.format(sc)]
                orca.add_injectable('previous_{}_logsum_file'
                                    .format(type), ls)
                return ls
            else:
                return orca.get_injectable('previous_{}_logsum_file'
                                           .format(type))
        else:
            if 'logsum_{}_s{}'.format(yr, sc) in logsums:
                ls = logsums['logsum_{}_s{}'.format(yr, sc)]
                orca.add_injectable('previous_{}_logsum_file'
                                    .format(type), ls)
                return ls
            else:
                return orca.get_injectable('previous_{}_logsum_file'
                                           .format(type))
    except:
        if 'logsum' in logsums:
            ls = logsums['logsum']
            ls_type = 'generic'
        if 'logsum_{}'.format(yr) in logsums:
            ls = logsums['logsum_{}'.format(yr)]
            ls_type = 'year'
        if 'logsum_s{}'.format(sc) in logsums:
            ls = logsums['logsum_s{}'.format(sc)]
            ls_type = 'scenario'
        if 'logsum_{}_s{}'.format(yr, sc) in logsums:
            ls = logsums['logsum_{}_s{}'.format(yr, sc)]
            ls_type = 'year_scenario'
        orca.add_injectable('previous_{}_logsum_type'.format(type),
                            ls_type)
        orca.add_injectable('previous_{}_logsum_file'.format(type),
                            ls)
        return ls
示例#48
0
def add_extra_columns_func(df):
    for col in ["residential_price", "non_residential_rent"]:
        if col not in df.columns:
            df[col] = 0
        else:
            df[col] = df[col].fillna(0)

    if "deed_restricted_units" not in df.columns:
        df["deed_restricted_units"] = 0
    else:
        print "Number of deed restricted units built = %d" %\
            df.deed_restricted_units.sum()

    df["redfin_sale_year"] = 2012
    df["redfin_sale_price"] = np.nan

    if "residential_units" not in df.columns:
        df["residential_units"] = 0
    else:
        df["residential_units"] = df["residential_units"].fillna(0)

    # we're keeping sqft per unit in the buildings table but we need
    # to make sure we get a comparable column out of the feasibility
    # table which is what generates new buildings. ave_unit_size is
    # the closest thing, even though its calculated at the parcel level
    # rather than the building level
    if 'sqft_per_unit' not in df.columns:
        df['sqft_per_unit'] = df['ave_unit_size']

    if "parcel_size" not in df:
        df["parcel_size"] = \
            orca.get_table("parcels").parcel_size.loc[df.parcel_id]

    if orca.is_injectable("year") and "year_built" not in df:
        df["year_built"] = orca.get_injectable("year")

    if orca.is_injectable("form_to_btype_func") and \
            "building_type" not in df:
        form_to_btype_func = orca.get_injectable("form_to_btype_func")
        df["building_type"] = df.apply(form_to_btype_func, axis=1)

    return df
示例#49
0
def conditional_upzone(scenario, attr_name, upzone_name):
    scenario_inputs = orca.get_injectable("scenario_inputs")
    zoning_baseline = orca.get_table(
        scenario_inputs["baseline"]["zoning_table_name"])
    attr = zoning_baseline[attr_name]
    if scenario != "baseline":
        zoning_scenario = orca.get_table(
            scenario_inputs[scenario]["zoning_table_name"])
        upzone = zoning_scenario[upzone_name].dropna()
        attr = pd.concat([attr, upzone], axis=1).max(skipna=True, axis=1)
    return attr
示例#50
0
def form_to_btype_func(building):
    settings = orca.get_injectable('settings')
    form = building.form
    dua = building.residential_units / (building.parcel_size / 43560.0)
    # precise mapping of form to building type for residential
    if form is None or form == "residential":
        if dua < 16:
            return "HS"
        elif dua < 32:
            return "HT"
        return "HM"
    return settings["form_to_btype"][form][0]
示例#51
0
def parcel_avg_price(use):
    #if use is residential translate unit price to price per sqft
    buildings = orca.merge_tables('buildings', tables=['buildings','parcels'],
                                  columns=['unit_price_residential','building_type_id','residential_sqft',
                                           'zone_id', 'unit_price_non_residential'])
    use_btype = orca.get_injectable('use_btype')
    if use == 'residential':
        price = (buildings.unit_price_residential.loc[np.in1d(buildings.building_type_id, use_btype[use])] /
                 buildings.residential_sqft.loc[np.in1d(buildings.building_type_id, use_btype[use])]).groupby(buildings.zone_id).mean()
    else:
        price = buildings.unit_price_non_residential.loc[np.in1d(buildings.building_type_id, use_btype[use])].groupby(buildings.zone_id).mean()

    return misc.reindex(price, orca.get_table('parcels').zone_id)
示例#52
0
def supply_and_demand_multiplier_func(demand, supply):
    s = demand / supply
    settings = orca.get_injectable('settings')
    print "Number of submarkets where demand exceeds supply:", len(s[s > 1.0])
    # print "Raw relationship of supply and demand\n", s.describe()
    supply_correction = settings["price_equilibration"]
    clip_change_high = supply_correction["kwargs"]["clip_change_high"]
    t = s
    t -= 1.0
    t = t / t.max() * (clip_change_high-1)
    t += 1.0
    s.loc[s > 1.0] = t.loc[s > 1.0]
    return s, (s <= 1.0).all()
示例#53
0
def parcel_is_allowed(form):
    settings = orca.get_injectable('settings')
    form_to_btype = settings["form_to_btype"]
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [orca.get_table('zoning_baseline')
               ['type%d' % typ] > 0 for typ in form_to_btype[form]]
    s = pd.concat(allowed, axis=1).max(axis=1).\
        reindex(orca.get_table('parcels').index).fillna(False)

    #if form == "residential":
    #    # allow multifam in pdas 
    #    s[orca.get_table('parcels').pda.notnull()] = 1 

    return s
示例#54
0
    def craigslist(store):
        df = store['rentals']
        net = orca.get_injectable('net')
        df['node_id'] = net['walk'].get_node_ids(
            df['longitude'], df['latitude'])
        df['tmnode_id'] = net['drive'].get_node_ids(
            df['longitude'], df['latitude'])
        # fill nans -- missing bedrooms are mostly studio apts
        df['bedrooms'] = df.bedrooms.replace(np.nan, 1)
        df['neighborhood'] = df.neighborhood.replace(np.nan, '')

        # gotta do this to use the same yaml for estimation and simulation
        df['sqft_per_unit'] = df['sqft']
        df['price_per_sqft'] = df['rent_sqft']
        return df
示例#55
0
def job_spaces():
    store = orca.get_injectable('store')
    b = orca.get_table('buildings').to_frame(['luz_id', 'development_type_id','non_residential_sqft', 'year_built'])
    bsqft_job = store['building_sqft_per_job']
    merged = pd.merge(b.reset_index(), bsqft_job, left_on = ['luz_id', 'development_type_id'], right_on = ['luz_id', 'development_type_id'])
    merged = merged.set_index('building_id')
    merged.sqft_per_emp[merged.sqft_per_emp < 40] = 40
    merged['job_spaces'] = np.ceil(merged.non_residential_sqft / merged.sqft_per_emp)
    job_spaces = pd.Series(merged.job_spaces, index = b.index)
    b['job_spaces'] = job_spaces
    b.job_spaces[(b.luz_id <17)&(b.year_built<2013)] = np.ceil(b.job_spaces[(b.luz_id <17)&(b.year_built<2013)]/10.0)
    b.job_spaces[(b.job_spaces > 2000)&(b.year_built<2013)] = 2000
    b.job_spaces[b.job_spaces.isnull()] = np.ceil(b.non_residential_sqft/200.0)
    b.job_spaces[b.year_built < 2013] = np.ceil(b.job_spaces[b.year_built < 2013]/3.25)
    return b.job_spaces
示例#56
0
def parcel_is_allowed_func(form):
    config = orca.get_injectable("pf_config")
    bt_distr = config.forms[form]
    glu = config.form_glut[form]
    zoning = orca.get_table('parcel_zoning')
    btused = config.residential_uses.index[bt_distr > 0]
    is_res_bt = config.residential_uses[btused]
    unit = config.form_density_type[form]
    parcels = orca.get_table('parcels')
    result = pd.Series(0, index=parcels.index)
    for typ in is_res_bt.index:
        this_zoning = zoning.local.loc[np.logical_and(zoning.index.get_level_values("constraint_type") == unit, 
                                                      zoning.index.get_level_values("generic_land_use_type_id") == glu)]
        pcls = this_zoning.index.get_level_values("parcel_id")
        result[pcls] = result[pcls] + 1
    return (result == is_res_bt.index.size)
示例#57
0
def full_run(store, omx_file, preload_3d_skims, chunk_size=0):

    configs_dir = os.path.join(os.path.dirname(__file__), '..', '..', '..', 'example')
    orca.add_injectable("configs_dir", configs_dir)

    inject_settings(configs_dir,
                    households_sample_size=HOUSEHOLDS_SAMPLE_SIZE,
                    preload_3d_skims=preload_3d_skims,
                    chunk_size=chunk_size)

    orca.add_injectable("omx_file", omx_file)
    orca.add_injectable("store", store)
    orca.add_injectable("set_random_seed", set_random_seed)

    orca.clear_cache()

    # grab some of the tables
    orca.get_table("land_use").to_frame().info()
    orca.get_table("households").to_frame().info()
    orca.get_table("persons").to_frame().info()

    assert len(orca.get_table("households").index) == HOUSEHOLDS_SAMPLE_SIZE
    assert orca.get_injectable("chunk_size") == chunk_size

    # run the models in the expected order
    orca.run(["school_location_simulate"])
    orca.run(["workplace_location_simulate"])
    orca.run(["auto_ownership_simulate"])
    orca.run(["cdap_simulate"])
    orca.run(['mandatory_tour_frequency'])
    orca.get_table("mandatory_tours").tour_type.value_counts()
    orca.run(['non_mandatory_tour_frequency'])
    orca.get_table("non_mandatory_tours").tour_type.value_counts()
    orca.run(["destination_choice"])
    orca.run(["mandatory_scheduling"])
    orca.run(["non_mandatory_scheduling"])
    orca.run(["patch_mandatory_tour_destination"])
    orca.run(["tour_mode_choice_simulate"])
    orca.run(["trip_mode_choice_simulate"])

    tours_merged = orca.get_table("tours_merged").to_frame()

    tour_count = len(tours_merged.index)

    orca.clear_cache()

    return tour_count
def profit_to_prob_func(df):
    # the clip is because we still might build negative profit buildings
    # (when we're subsidizing them) and choice doesn't allow negative
    # probability options
    max_profit = df.max_profit.clip(1)

    factor = float(orca.get_injectable("settings")[
        "profit_vs_return_on_cost_combination_factor"])

    df['return_on_cost'] = max_profit / df.total_cost

    # now we're going to make two pdfs and weight them
    ROC_p = df.return_on_cost.values / df.return_on_cost.sum()
    profit_p = max_profit / max_profit.sum()
    p = 1.0 * ROC_p + factor * profit_p

    return p / p.sum()
示例#59
0
def parcel_is_allowed(form):
    settings = orca.get_injectable('settings')
    form_to_btype = settings["form_to_btype"]
    # we have zoning by building type but want
    # to know if specific forms are allowed
    allowed = [orca.get_table('zoning_baseline')
               ['type%d' % typ] > 0 for typ in form_to_btype[form]]

    # also check if the scenario based zoning adds the building type
    allowed2 = [orca.get_table('zoning_scenario')
                ['type%d' % typ] > 0 for typ in form_to_btype[form]]

    allowed = allowed + allowed2

    s = pd.concat(allowed, axis=1).max(axis=1).\
        reindex(orca.get_table('parcels').index).fillna(False)

    return s.astype("bool")
示例#60
0
def fill_nas_from_config(dfname, df):
    df_cnt = len(df)
    fillna_config = orca.get_injectable("fillna_config")
    fillna_config_df = fillna_config[dfname]
    for fname in fillna_config_df:
        filltyp, dtyp = fillna_config_df[fname]
        s_cnt = df[fname].count()
        fill_cnt = df_cnt - s_cnt
        if filltyp == "zero":
            val = 0
        elif filltyp == "mode":
            val = df[fname].dropna().value_counts().idxmax()
        elif filltyp == "median":
            val = df[fname].dropna().quantile()
        else:
            assert 0, "Fill type not found!"
        print "Filling column {} with value {} ({} values)".\
            format(fname, val, fill_cnt)
        df[fname] = df[fname].fillna(val).astype(dtyp)
    return df