示例#1
0
def lcm_simulate(cfg, choosers, buildings, join_tbls, out_fname,
                 supply_fname, vacant_fname,
                 enable_supply_correction=None):
    """
    Simulate the location choices for the specified choosers

    Parameters
    ----------
    cfg : string
        The name of the yaml config file from which to read the location
        choice model
    choosers : DataFrameWrapper
        A dataframe of agents doing the choosing
    buildings : DataFrameWrapper
        A dataframe of buildings which the choosers are locating in and which
        have a supply
    join_tbls : list of strings
        A list of land use dataframes to give neighborhood info around the
        buildings - will be joined to the buildings using existing broadcasts.
    out_fname : string
        The column name to write the simulated location to
    supply_fname : string
        The string in the buildings table that indicates the amount of
        available units there are for choosers, vacant or not
    vacant_fname : string
        The string in the buildings table that indicates the amount of vacant
        units there will be for choosers
    enable_supply_correction : Python dict
        Should contain keys "price_col" and "submarket_col" which are set to
        the column names in buildings which contain the column for prices and
        an identifier which segments buildings into submarkets
    """
    cfg = misc.config(cfg)

    choosers_df = utils.to_frame(choosers, [], cfg, additional_columns=[out_fname])
    
    additional_columns = [supply_fname, vacant_fname]
    if enable_supply_correction is not None and \
            "submarket_col" in enable_supply_correction:
        additional_columns += [enable_supply_correction["submarket_col"]]
    if enable_supply_correction is not None and \
            "price_col" in enable_supply_correction:
        additional_columns += [enable_supply_correction["price_col"]]
    locations_df = utils.to_frame(buildings, join_tbls, cfg,
                            additional_columns=additional_columns)
    
    
    available_units = buildings[supply_fname]
    vacant_units = buildings[vacant_fname]

    print("There are %d total available units" % available_units.sum())
    print("    and %d total choosers" % len(choosers))
    print("    but there are %d overfull buildings" %
          len(vacant_units[vacant_units < 0]))

    vacant_units = vacant_units[vacant_units > 0]

    # sometimes there are vacant units for buildings that are not in the
    # locations_df, which happens for reasons explained in the warning below
    indexes = np.repeat(vacant_units.index.values,
                        vacant_units.values.astype('int'))
    isin = pd.Series(indexes).isin(locations_df.index)
    missing = len(isin[isin == False])
    indexes = indexes[isin.values]
    units = locations_df.loc[indexes].reset_index()
    utils.check_nas(units)

    print("    for a total of %d temporarily empty units" % vacant_units.sum())
    print("    in %d buildings total in the region" % len(vacant_units))

    if missing > 0:
        print("WARNING: %d indexes aren't found in the locations df -" %
              missing)
        print("    this is usually because of a few records that don't join ")
        print("    correctly between the locations df and the aggregations tables")

    movers = choosers_df[choosers_df[out_fname] == -1]
    print("There are %d total movers for this LCM" % len(movers))

    if enable_supply_correction is not None:
        assert isinstance(enable_supply_correction, dict)
        assert "price_col" in enable_supply_correction
        price_col = enable_supply_correction["price_col"]
        assert "submarket_col" in enable_supply_correction
        submarket_col = enable_supply_correction["submarket_col"]

        lcm = utils.yaml_to_class(cfg).from_yaml(str_or_buffer=cfg)

        if enable_supply_correction.get("warm_start", False) is True:
            raise NotImplementedError()

        multiplier_func = enable_supply_correction.get("multiplier_func", None)
        if multiplier_func is not None:
            multiplier_func = sim.get_injectable(multiplier_func)

        kwargs = enable_supply_correction.get('kwargs', {})
        new_prices, submarkets_ratios = supply_and_demand(
            lcm,
            movers,
            units,
            submarket_col,
            price_col,
            base_multiplier=None,
            multiplier_func=multiplier_func,
            **kwargs)

        # we will only get back new prices for those alternatives
        # that pass the filter - might need to specify the table in
        # order to get the complete index of possible submarkets
        submarket_table = enable_supply_correction.get("submarket_table", None)
        if submarket_table is not None:
            submarkets_ratios = submarkets_ratios.reindex(
                sim.get_table(submarket_table).index).fillna(1)
            # write final shifters to the submarket_table for use in debugging
            sim.get_table(submarket_table)["price_shifters"] = submarkets_ratios

        print("Running supply and demand")
        print("Simulated Prices")
        print(buildings[price_col].describe())
        print("Submarket Price Shifters")
        print(submarkets_ratios.describe())
        # we want new prices on the buildings, not on the units, so apply
        # shifters directly to buildings and ignore unit prices
        sim.add_column(buildings.name,
                       price_col+"_hedonic", buildings[price_col])
        new_prices = buildings[price_col] * \
            submarkets_ratios.loc[buildings[submarket_col]].values
        buildings.update_col_from_series(price_col, new_prices)
        print("Adjusted Prices")
        print(buildings[price_col].describe())

    #if len(movers) > vacant_units.sum():
    #    print "WARNING: Not enough locations for movers"
    #    print "    reducing locations to size of movers for performance gain"
    #    movers = movers.head(vacant_units.sum())

    new_units, _ = utils.yaml_to_class(cfg).predict_from_cfg(movers, units, cfg)
    # new_units returns nans when there aren't enough units,
    # get rid of them and they'll stay as -1s
    new_units = new_units.dropna()

    # go from units back to buildings
    new_buildings = pd.Series(units.loc[new_units.values][out_fname].values,
                              index=new_units.index)

    choosers.update_col_from_series(out_fname, new_buildings)
    utils._print_number_unplaced(choosers, out_fname)

    if enable_supply_correction is not None:
        new_prices = buildings[price_col]
        if "clip_final_price_low" in enable_supply_correction:
            new_prices = new_prices.clip(lower=enable_supply_correction[
                "clip_final_price_low"])
        if "clip_final_price_high" in enable_supply_correction:
            new_prices = new_prices.clip(upper=enable_supply_correction[
                "clip_final_price_high"])
        buildings.update_col_from_series(price_col, new_prices)

    vacant_units = buildings[vacant_fname]
    print("    and there are now %d empty units" % vacant_units.sum())
    print("    and %d overfull buildings" % len(vacant_units[vacant_units < 0]))
示例#2
0
def run_developer(forms, agents, buildings, buildings_all, supply_fname, parcel_size,
                  ave_unit_size, total_units, feasibility, year=None,
                  target_vacancy=.1, form_to_btype_callback=None,
                  add_more_columns_callback=None, max_parcel_size=34647265,
                  residential=True, bldg_sqft_per_job=400.0,
                  min_unit_size=400, remove_developed_buildings=True,
                  unplace_agents=['households', 'jobs']):
    """
    Run the developer model to pick and build buildings

    Parameters
    ----------
    forms : string or list of strings
        Passed directly dev.pick
    agents : DataFrame Wrapper
        Used to compute the current demand for units/floorspace in the area
    buildings : DataFrame Wrapper
        Used to compute the current supply of units/floorspace in the area
    buildings_all:
        Buildings for the entire region, used to write back to buildings table
    supply_fname : string
        Identifies the column in buildings which indicates the supply of
        units/floorspace
    parcel_size : Series
        Passed directly to dev.pick
    ave_unit_size : Series
        Passed directly to dev.pick - average residential unit size
    total_units : Series
        Passed directly to dev.pick - total current residential_units /
        job_spaces
    feasibility : DataFrame Wrapper
        The output from feasibility above (the table called 'feasibility')
    year : int
        The year of the simulation - will be assigned to 'year_built' on the
        new buildings
    target_vacancy : float
        The target vacancy rate - used to determine how much to build
    form_to_btype_callback : function
        Will be used to convert the 'forms' in the pro forma to
        'building_type_id' in the larger model
    add_more_columns_callback : function
        Takes a dataframe and returns a dataframe - is used to make custom
        modifications to the new buildings that get added
    max_parcel_size : float
        Passed directly to dev.pick - max parcel size to consider
    min_unit_size : float
        Passed directly to dev.pick - min unit size that is valid
    residential : boolean
        Passed directly to dev.pick - switches between adding/computing
        residential_units and job_spaces
    bldg_sqft_per_job : float
        Passed directly to dev.pick - specified the multiplier between
        floor spaces and job spaces for this form (does not vary by parcel
        as ave_unit_size does)
    remove_redeveloped_buildings : optional, boolean (default True)
        Remove all buildings on the parcels which are being developed on
    unplace_agents : optional : list of strings (default ['households', 'jobs'])
        For all tables in the list, will look for field building_id and set
        it to -1 for buildings which are removed - only executed if
        remove_developed_buildings is true

    Returns
    -------
    Writes the result back to the buildings table and returns the new
    buildings with available debugging information on each new building
    """

    dev = developer.Developer(feasibility.to_frame())
    #dev = WFRCDeveloper.WFRCDeveloper(feasibility.to_frame())
    target_units = dev.\
        compute_units_to_build(len(agents),
                               buildings[supply_fname].sum(),
                               target_vacancy)

    print("{:,} feasible buildings before running developer".format(
        len(dev.feasibility)))

    new_buildings = dev.pick(forms,
                             target_units,
                             parcel_size,
                             ave_unit_size,
                             total_units,
                             max_parcel_size=max_parcel_size,
                             min_unit_size=min_unit_size,
                             drop_after_build=True,
                             residential=residential,
                             bldg_sqft_per_job=bldg_sqft_per_job)

    sim.add_table("feasibility", dev.feasibility)
    year = sim.get_injectable('year')
    if new_buildings is None:
        return

    if len(new_buildings) == 0:
        return new_buildings
    
    if not isinstance(forms, list):
        # form gets set only if forms is a list
        new_buildings["form"] = forms

    if form_to_btype_callback is not None:
        new_buildings["building_type_id"] = new_buildings.\
            apply(form_to_btype_callback, axis=1)

    new_buildings["stories"] = new_buildings.stories.apply(np.ceil)
    new_buildings["note"] = "simulated"
    
    ret_buildings = new_buildings
    if add_more_columns_callback is not None:
        new_buildings = add_more_columns_callback(new_buildings)
        
    if year is not None:
        new_buildings["year_built"] = year

    print("Adding {:,} buildings with {:,} {}".
          format(len(new_buildings),
                 int(new_buildings[supply_fname].sum()),
                 supply_fname))

    print("{:,} feasible buildings after running developer".format(
        len(dev.feasibility)))

    old_buildings = buildings.to_frame(buildings.local_columns)
    old_buildings_all = buildings_all.to_frame(buildings.local_columns)
    new_buildings = new_buildings[buildings.local_columns]
    
    if remove_developed_buildings:
        redev_buildings = old_buildings.parcel_id.isin(new_buildings.parcel_id)
        redev_buildings_all = old_buildings_all.parcel_id.isin(new_buildings.parcel_id)
        l = len(old_buildings)
        drop_buildings = old_buildings[redev_buildings]
        drop_buildings_all = old_buildings_all[redev_buildings_all]
        old_buildings = old_buildings[np.logical_not(redev_buildings)]
        old_buildings_all = old_buildings_all[np.logical_not(redev_buildings_all)]
        l2 = len(old_buildings)
        print("before dropped l:" + str(l))
        print("after dropped l2: " + str(l2))
        #print redev_buildings
        #print drop_buildings
        if l2-l > 0:
            print("Dropped {} buildings because they were redeveloped".
                  format(l2 - l))

        for tbl in unplace_agents:
            agents = sim.get_table(tbl)
            agents = agents.to_frame(agents.local_columns)
            #displaced_agents = agents.building_id.isin(drop_buildings.index)
            displaced_agents = agents.building_id.isin(drop_buildings_all.index)
            print("Unplaced {} before: {}".format(tbl, len(agents.query(
                "building_id == -1"))))
            agents.building_id[displaced_agents] = -1
            print("Unplaced {} after: {}".format(tbl, len(agents.query(
                "building_id == -1"))))
            sim.add_table(tbl, agents)
    
    all_buildings = dev.merge(old_buildings_all, new_buildings)
    
    sim.add_table("buildings", all_buildings)

    return ret_buildings
示例#3
0
def get_run_no():
    if 'run_no' not in sim.list_injectables():
        sim.add_injectable("run_no", misc.get_run_number())
    return sim.get_injectable("run_no")
示例#4
0
def get_run_filename():
    if 'run_no' not in sim.list_injectables():
        get_run_no()
    return os.path.join(misc.runs_dir(), "run%d.h5" % sim.get_injectable("run_no"))
import datasources, models, variables, utils
import orca_wfrc.orca as sim
import pandas as pd
import numpy as np
import os

remm_years = sim.get_injectable('settings')['remm']

#sim.run(["travel_time_reset"])
sim.run(
    [
        "clear_cache",
        "utility_restriction",  # run utility restriction for UT County
        "travel_time_import",
        "neighborhood_vars",  # neighborhood variables
        "households_transition",  # households transition
        "jobs_transition",  # jobs transition
        "feasibility",  # compute feasibility
        "residential_developer_slc",  # build buildings Salt Lake County
        "residential_developer_davis",  # build buildings Davis County
        "residential_developer_weber",  # build buildings Weber County
        "residential_developer_utah",  # build buildings Utah County
        "office_developer_slc",
        "office_developer_utah",
        "office_developer_davis",
        "office_developer_weber",
        "retail_developer_slc",
        "retail_developer_utah",
        "retail_developer_davis",
        "retail_developer_weber",
        "industrial_developer_slc",