def scatterplot(data, name="", xlabel="", ylabel="", size= 3): """ Creates a scatter plot from x,y data. *data* is a list of (x,y) tuples. """ xAxis = NumberAxis(xlabel) xAxis.setAutoRangeIncludesZero(False) yAxis = NumberAxis(ylabel) yAxis.setAutoRangeIncludesZero(False) series = XYSeries("Values"); for (i,j) in data: series.add(i, j) dataset = XYSeriesCollection() dataset.addSeries(series); chart = ChartFactory.createScatterPlot(name, xlabel, ylabel, dataset, PlotOrientation.VERTICAL, True, True, False) plot = chart.getPlot() plot.getRenderer().setSeriesShape(0, ShapeUtilities.createRegularCross(size,size)); return Chart(chart)
def createChart(self): dataset = XYSeriesCollection() for s in self.allSeries: dataset.addSeries(s) # title is None chart = ChartFactory.createScatterPlot( \ None, xlabel(), ylabel(), \ dataset, PlotOrientation.VERTICAL, \ True, True, False) return chart
def plot2D(points, Ca, Cb): maxIntensity = 255.0 dataset = XYSeriesCollection() seriesNN = XYSeries(channels[Ca+1]+" -ve "+channels[Cb+1]+" -ve") seriesPP = XYSeries(channels[Ca+1]+" +ve "+channels[Cb+1]+" +ve") seriesNP = XYSeries(channels[Ca+1]+" -ve "+channels[Cb+1]+" +ve") seriesPN = XYSeries(channels[Ca+1]+" +ve "+channels[Cb+1]+" -ve") for p in points: posA = channels[Ca+1] in thresholds and p[Ca]>thresholds[ channels[Ca+1] ] posB = channels[Cb+1] in thresholds and p[Cb]>thresholds[ channels[Cb+1] ] if posA and posB: seriesPP.add(p[Cb], p[Ca]) elif posA: seriesPN.add(p[Cb], p[Ca]) elif posB: seriesNP.add(p[Cb], p[Ca]) else: seriesNN.add(p[Cb], p[Ca]) dataset.addSeries(seriesNN) dataset.addSeries(seriesPN) dataset.addSeries(seriesNP) dataset.addSeries(seriesPP) chart = ChartFactory.createScatterPlot( title+" - "+channels[Cb+1]+" vs "+channels[Ca+1], channels[Cb+1], channels[Ca+1], dataset, PlotOrientation.VERTICAL, False,True,False ) plot = chart.getPlot() plot.getDomainAxis().setRange(Range(0.00, maxIntensity), True, False) plot.getRangeAxis().setRange(Range(0.00, maxIntensity), True, False) renderer = chart.getPlot().getRenderer() renderer.setSeriesPaint(0, Color(64,64,64)) #NN renderer.setSeriesPaint(1, Color(0,255,0)) #PN renderer.setSeriesPaint(2, Color(0,0,255)) #NP renderer.setSeriesPaint(3, Color(0,255,255)) #PP shape = Ellipse2D.Float(-1,-1,3,3) renderer.setSeriesShape(0, shape ) renderer.setSeriesShape(1, shape ) renderer.setSeriesShape(2, shape ) renderer.setSeriesShape(3, shape ) frame = ChartFrame(title+" - "+channels[Cb+1]+" vs "+channels[Ca+1], chart) frame.setSize(800, 800) frame.setLocationRelativeTo(None) frame.setVisible(True)
def measure(stack, cells, nuclei): time = [ (t-1)*cal.frameInterval for t in range(T+1) ] cellValues0 = [ 0.0 for t in range(T+1) ] cellValues1 = [ 0.0 for t in range(T+1) ] cellAreas0 = [ 0.0 for t in range(T+1) ] cellAreas1 = [ 0.0 for t in range(T+1) ] nucleusValues0 = [ 0.0 for t in range(T+1) ] nucleusValues1 = [ 0.0 for t in range(T+1) ] nucleusAreas0 = [ 0.0 for t in range(T+1) ] nucleusAreas1 = [ 0.0 for t in range(T+1) ] nonNucleusValues0 = [ 0.0 for t in range(T+1) ] nonNucleusValues1 = [ 0.0 for t in range(T+1) ] for t in range(1,T+1): ip = stack.getProcessor(t) if cells[t] is None: continue #subtract background Z from all intensity Z measurements if cells [t] is None: print("Nocellsfound" + str(t)) bothCells = ShapeRoi(cells[t][0]).or(ShapeRoi(cells[t][1])) backRoi = ShapeRoi(Rectangle(0,0,imp.getWidth(),imp.getHeight())).not( bothCells ) ip.setRoi(backRoi) backMean = ip.getStatistics().mean ip.setRoi( cells[t][0] ) stats0 = ip.getStatistics() cellValues0[t] = stats0.mean - backMean cellAreas0[t] = stats0.area * cal.pixelWidth * cal.pixelHeight nuc0 = None for nuc in nuclei[t]: rect = nuc.getBounds() nx = int(rect.x+(rect.width/2.0)) ny = int(rect.y+(rect.height/2.0)) if cells[t][0].contains(nx,ny): nuc0 = nuc break if nuc0 is not None: ip.setRoi( nuc0 ) nucStats0 = ip.getStatistics() nucleusValues0[t] = nucStats0.mean - backMean nucleusAreas0[t] = nucStats0.area * cal.pixelWidth * cal.pixelHeight nuc0.setPosition(0,0,t) nuc0.setStrokeColor(Color.CYAN) ol.add(nuc0) nonnucRoi0 = ShapeRoi(cells[t][0]).not( ShapeRoi(nuc0) ) ip.setRoi( nonnucRoi0 ) nonNucleusValues0[t] = ip.getStatistics().mean - backMean ip.setRoi( cells[t][1] ) stats1 = ip.getStatistics() cellValues1[t] = stats1.mean - backMean cellAreas1[t] = stats1.area * cal.pixelWidth * cal.pixelHeight nuc1 = None for nuc in nuclei[t]: rect = nuc.getBounds() nx = int(rect.x+(rect.width/2.0)) ny = int(rect.y+(rect.height/2.0)) if cells[t][1].contains(nx,ny): nuc1 = nuc break if nuc1 is not None: ip.setRoi( nuc1 ) nucStats1 = ip.getStatistics() nucleusValues1[t] = nucStats1.mean - backMean nucleusAreas1[t] = nucStats1.area * cal.pixelWidth * cal.pixelHeight nuc1.setPosition(0,0,t) nuc1.setStrokeColor(Color.CYAN) ol.add(nuc1) nonnucRoi1 = ShapeRoi(cells[t][1]).not( ShapeRoi(nuc1) ) ip.setRoi( nonnucRoi1 ) nonNucleusValues1[t] = ip.getStatistics().mean - backMean rt = ResultsTable() rt.showRowNumbers(False) for t in range(1,T+1): rt.setValue("Time ("+cal.getTimeUnit()+")", t-1, IJ.d2s(time[t],1)) areaRatio = cellAreas0[t] / cellAreas1[t] if cellAreas0[t]>0 and cellAreas1[t]>0 else 0.0 rt.setValue("Cell 0:Cell 1 Area Ratio", t-1, areaRatio) nucleusRatio = nucleusValues0[t] / nucleusValues1[t] if nucleusValues0[t]>0 and nucleusValues1[t]>0 else 0.0 rt.setValue("Cell 0:Cell 1 Nucleus Ratio", t-1, nucleusRatio) nonNucleusRatio = nonNucleusValues0[t] / nonNucleusValues1[t] if nonNucleusValues0[t]>0 and nonNucleusValues1[t]>0 else 0.0 rt.setValue("Cell 0:Cell 1 Non-Nucleus Ratio", t-1, nonNucleusRatio) nnnRatio0 = nucleusValues0[t] / nonNucleusValues0[t] if nucleusValues0[t]>0 and nonNucleusValues0[t]>0 else 0.0 rt.setValue("Cell 0 Nucleus:Non-Nucleus Ratio", t-1, nnnRatio0) nnnRatio1 = nucleusValues1[t] / nonNucleusValues1[t] if nucleusValues1[t]>0 and nonNucleusValues1[t]>0 else 0.0 rt.setValue("Cell 1 Nucleus:Non-Nucleus Ratio", t-1, nnnRatio1) rt.setValue("Cell 0 (red) Area ("+cal.getUnit()+u"\u00b2"+")", t-1, cellAreas0[t]) rt.setValue("Cell 0 Nucleus Area ("+cal.getUnit()+u"\u00b2"+")", t-1, nucleusAreas0[t]) rt.setValue("Cell 0 All", t-1, cellValues0[t]) rt.setValue("Cell 0 Nucleus", t-1, nucleusValues0[t]) rt.setValue("Cell 0 Non-Nucleus", t-1, nonNucleusValues0[t]) rt.setValue("Cell 1 (green) Area ("+cal.getUnit()+u"\u00b2"+")", t-1, cellAreas1[t]) rt.setValue("Cell 1 Nucleus Area ("+cal.getUnit()+u"\u00b2"+")", t-1, nucleusAreas1[t]) rt.setValue("Cell 1 All", t-1, cellValues1[t]) rt.setValue("Cell 1 Nucleus", t-1, nucleusValues1[t]) rt.setValue("Cell 1 Non-Nucleus", t-1, nonNucleusValues1[t]) rt.show(imp.getTitle()+"-Results") dataset = DefaultXYDataset() dataset.addSeries( "Cell 0", [time[1:], cellValues0[1:]] ) dataset.addSeries( "Cell 1", [time[1:], cellValues1[1:]] ) dataset.addSeries( "Nucleus 0", [time[1:], nucleusValues0[1:]] ) dataset.addSeries( "Nucleus 1", [time[1:], nucleusValues1[1:]] ) dataset.addSeries( "Non-Nucleus 0", [time[1:], nonNucleusValues0[1:]] ) dataset.addSeries( "Non-Nucleus 1", [time[1:], nonNucleusValues1[1:]] ) chart = ChartFactory.createScatterPlot( imp.getTitle(), "Time ("+cal.getTimeUnit()+")", "Intensity Z", dataset, PlotOrientation.VERTICAL, True,True,False ) plot = chart.getPlot() plot.setBackgroundPaint(Color(64, 128, 255)) plot.setDomainGridlinePaint(Color.BLACK) plot.setRangeGridlinePaint(Color.BLACK) renderer = plot.getRenderer() legend = LegendItemCollection() shapeR = 2.0 nucShape = Ellipse2D.Float(-shapeR,-shapeR,shapeR*2,shapeR*2) nonNucShape = Path2D.Float() nonNucShape.moveTo(-shapeR,-shapeR) nonNucShape.lineTo(shapeR,shapeR) nonNucShape.moveTo(shapeR,-shapeR) nonNucShape.lineTo(-shapeR,shapeR) for s in range(dataset.getSeriesCount()): if s == 0: renderer.setSeriesLinesVisible(s, True) renderer.setSeriesShapesVisible(s, False) renderer.setSeriesStroke(s, BasicStroke(1)) renderer.setSeriesPaint(s, Color.RED) legend.add( LegendItem("Cell 0", Color.RED) ) elif s == 1: renderer.setSeriesLinesVisible(s, True) renderer.setSeriesShapesVisible(s, False) renderer.setSeriesStroke(s, BasicStroke(1)) renderer.setSeriesPaint(s, Color.GREEN) legend.add( LegendItem("Cell 1", Color.GREEN) ) elif s == 2: renderer.setSeriesLinesVisible(s, False) renderer.setSeriesShapesVisible(s, True) renderer.setSeriesShape(s, nucShape) renderer.setSeriesPaint(s, Color.RED) elif s == 3: renderer.setSeriesLinesVisible(s, False) renderer.setSeriesShapesVisible(s, True) renderer.setSeriesShape(s, nucShape) renderer.setSeriesPaint(s, Color.GREEN) elif s == 4: renderer.setSeriesLinesVisible(s, False) renderer.setSeriesShapesVisible(s, True) renderer.setSeriesShape(s, nonNucShape) renderer.setSeriesPaint(s, Color.RED) elif s == 5: renderer.setSeriesLinesVisible(s, False) renderer.setSeriesShapesVisible(s, True) renderer.setSeriesShape(s, nonNucShape) renderer.setSeriesPaint(s, Color.GREEN) plot.setFixedLegendItems(legend) frame = ChartFrame(imp.getTitle()+" Z-Normalised Intensity", chart) frame.pack() frame.setSize( Dimension(800, 800) ) frame.setLocationRelativeTo(None) frame.setVisible(True)
def scatter(data,x=None,y=None,**kwargs): ''' Creates a scatter plot comparing two elements. At minimum, takes a collection of data. The second and third arguments, if they exist, are treated as the two elements to compare. If these arguments do not exist, the first two elements in the list are compared. If an optional regress=True argument is present, superimposes a linear regression for each series and prints some related info (R-value etc). Note that scatter plots can be zoomed with the mouse. Returns the plot object in case you want to customize the graph in some way. Takes an optional showMissing argument which determines whether missing values (-9999.0) should be displayed. Examples: scatter(data), scatter(data,"tmin","tmax",regress=True) ''' from org.jfree.data.xy import XYSeriesCollection,XYSeries from org.jfree.data import UnknownKeyException from org.jfree.chart import ChartFactory,ChartFrame from org.jfree.chart.plot import PlotOrientation,DatasetRenderingOrder from org.jfree.chart.renderer.xy import XYLineAndShapeRenderer from java.awt import Color regress=kwargs.get('regress',False) showMissing=kwargs.get('showMissing',False) # Try to be flexible about element parameters if x is not None: x = findElement(x).name if y is not None: y = findElement(y).name # Create a dataset from the data collection = XYSeriesCollection() for ob in data.groupedByObservation().items(): key,values = ob name = str(key[0]) if x==None: x = values[0].element.name try: xFact = (i for i in values if i.element.name == x).next() except StopIteration: # missing value continue xval = xFact.value if xval in missingValues and not showMissing: continue if y==None: try: y = values[1].element.name except IndexError: raise Exception("Error! Your data request returned only 1 value per observation. " "Must have 2 values to generate a scatter plot.") try: yFact = (i for i in values if i.element.name == y).next() except StopIteration: # missing value continue yval = yFact.value if yval in missingValues and not showMissing: continue try: series = collection.getSeries(name) except UnknownKeyException: collection.addSeries(XYSeries(name)) series = collection.getSeries(name) series.add(float(xval),float(yval)) # Create chart from dataset chart = ChartFactory.createScatterPlot( "", x, y, collection, PlotOrientation.VERTICAL, True, True, False ); plot = chart.getPlot() frame = ChartFrame("Scatter Plot", chart); frame.pack(); frame.setVisible(True); # Superimpose regression if desired if regress: regressioncollection = XYSeriesCollection() for series in collection.getSeries(): regression = _getregression(series) x1 = series.getMinX() y1 = regression.predict(x1) x2 = series.getMaxX() y2 = regression.predict(x2) regressionseries = XYSeries(series.getKey()) regressionseries.add(float(x1),float(y1)) regressionseries.add(float(x2),float(y2)) regressioncollection.addSeries(regressionseries) print series.getKey(),":" print " R: %8.4f" % regression.getR() print " R-squared: %8.4f" % regression.getRSquare() print " Significance: %8.4f" % regression.getSignificance() print plot.setDataset(1,regressioncollection) regressionRenderer = XYLineAndShapeRenderer(True,False) plot.setRenderer(1,regressionRenderer) plot.setDatasetRenderingOrder(DatasetRenderingOrder.FORWARD); colors = [0xec0000,0x58b911,0x6886ea,0xedd612,0xa93bb9,0xffb71b,0xe200df,0x1de2b6,0xdc91db,0x383838,0xb09344,0x4ea958,0xd78c9e,0x64008d,0xb0c95b] mainRenderer = plot.getRenderer(0) for i in range(collection.getSeriesCount()): try: mainRenderer.setSeriesPaint(i,Color(colors[i])) regressionRenderer.setSeriesPaint(i,Color(colors[i])) except IndexError: # Finite # of colors in the color array; beyond that let jfreechart pick break ''' # Jump through some hoops to ensure regressions are same color as scatters for each series. # Initially: doesn't work because series are not indexed the same. And I don't see a way # to get the actual series from the renderer in order to compare names or something. mainRenderer = plot.getRenderer(0) print "Renderer is",type(mainRenderer) index = 0 paint = mainRenderer.lookupSeriesPaint(index) print "Paint is",type(paint) while (paint is not None): print "Setting paint." regressionRenderer.setSeriesPaint(index,paint) index += 1 paint = mainRenderer.getSeriesPaint(index) ''' return plot
#imgB = WindowManager.getImage("26.93/25.90:test_file") imgA = WindowManager.getImage("12.12:test_file") imgB = WindowManager.getImage("13.01/12.12:test_file") ui = UI.getInstance() rois = ui.getRoiManager().getAllROIs() print "Create empty dataset" dataset = DefaultXYDataset() print "Create ScatterPlot" chart = ChartFactory.createScatterPlot( "Scatter Plot", imgA.getTitle(), imgB.getTitle(), dataset, PlotOrientation.VERTICAL, True, False, False); # random test data # #print "Add series to dataset" #npoints = 1000 #data = [[],[]] #for i in range(npoints): # data[0].append(i) # data[1].append(2*i+random.gauss(0,50)) # # this trick is needed to go from a 2D python array # to a 2D java array of doubles, see: # http://fiji.sc/wiki/index.php/Jython_Scripting#Creating_multi-dimensional_native_java_arrays #twoDimArr = array(data, Class.forName('[D'))