def cforange_filter_relieff(input_dict): import orange import orngFSS data = input_dict['dataset'] measure = orange.MeasureAttribute_relief(k=int(input_dict['k']), m=int(input_dict['m'])) margin = float(input_dict['margin']) new_dataset = orngFSS.filterRelieff(data,measure,margin) output_dict = {} output_dict['new_dataset'] = new_dataset return output_dict
# Description: Recursively eliminates attributes using Relief measure, until # the estimate relevants of all attributes is beyond certain threshold. # Makes use of filterRelieff from orngFSS # Category: preprocessing # Uses: voting.tab # Referenced: orngFSS.htm import orange, orngFSS def report_relevance(data): m = orngFSS.attMeasure(data) for i in m: print "%5.3f %s" % (i[1], i[0]) data = orange.ExampleTable("../datasets/adult_sample") print "Before feature subset selection:"; report_relevance(data) marg = 0.01 ndata = orngFSS.filterRelieff(data, margin=marg) print "\nAfter feature subset selection with margin %5.3f:" % marg report_relevance(ndata)
# Description: Recursively eliminates attributes using Relief measure, until # the estimate relevants of all attributes is beyond certain threshold. # Makes use of filterRelieff from orngFSS # Category: preprocessing # Uses: voting.tab # Referenced: orngFSS.htm import orange, orngFSS def report_relevance(data): m = orngFSS.attMeasure(data) for i in m: print "%5.3f %s" % (i[1], i[0]) data = orange.ExampleTable("../datasets/adult_sample") print "Before feature subset selection:" report_relevance(data) marg = 0.01 ndata = orngFSS.filterRelieff(data, margin=marg) print "\nAfter feature subset selection with margin %5.3f:" % marg report_relevance(ndata)