def dep_check_blast(dir_dep, os_id, dist_id, debian_dists, redhat_dists, force): if os_id == 'mac': url = ('https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.10.1/' 'ncbi-blast-2.10.1+-x64-macosx.tar.gz') elif os_id == 'linux': if dist_id in debian_dists: url = ('https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/' '2.10.1/ncbi-blast-2.10.1+-x64-linux.tar.gz') elif dist_id in redhat_dists: url = ('https://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/' '2.10.1/ncbi-blast-2.10.1+-x64-linux.tar.gz') dnld_path = opj(dir_dep, 'ncbi-blast.tar.gz') makeblastdb = None blastn = None tblastn = None try: if force is True: raise makeblastdb = which('makeblastdb') blastn = which('blastn') tblastn = which('tblastn') run([makeblastdb, '-help']) except Exception: try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'ncbi-blast')) makeblastdb = opj(dir_bin, 'bin', 'makeblastdb') blastn = opj(dir_bin, 'bin', 'blastn') tblastn = opj(dir_bin, 'bin', 'tblastn') run([makeblastdb, '-help']) except Exception: Log.wrn('BLAST+ was not found on this system, trying to download.') download_file(url, dnld_path) tar_ref = tarfile.open(dnld_path, 'r:gz') tar_ref.extractall(dir_dep) tar_ref.close() dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'ncbi-blast')) makeblastdb = opj(dir_bin, 'bin', 'makeblastdb') blastn = opj(dir_bin, 'bin', 'blastn') tblastn = opj(dir_bin, 'bin', 'tblastn') if not ope(makeblastdb) or \ not ope(blastn) or \ not ope(tblastn): Log.err('Could not download BLAST+.') return None, None, None regexp = r'\sblast\s([\d\.]*)' v = get_dep_version([makeblastdb, '-version'], regexp) Log.msg('makeblastdb is available:', v + ' ' + makeblastdb) v = get_dep_version([blastn, '-version'], regexp) Log.msg('blastn is available:', v + ' ' + blastn) v = get_dep_version([tblastn, '-version'], regexp) Log.msg('tblastn is available:', v + ' ' + tblastn) return makeblastdb, blastn, tblastn
def dnld_pfam_uniprot_seqs(ss, uniprot_acc, aa_uniprot_file, dir_cache_prj): if len(uniprot_acc) != 0: _ = opj(dir_cache_prj, 'aa_uniprot_acc_cache__' + ss) prev_uniprot_acc = [] if ope(_): with open(_, 'rb') as f: prev_uniprot_acc = pickle.load(f) with open(_, 'wb') as f: pickle.dump(uniprot_acc, f, protocol=PICKLE_PROTOCOL) if (set(uniprot_acc) != set(prev_uniprot_acc)) or \ (not ope(aa_uniprot_file)): Log.inf('Downloading Pfam protein sequences from UniProt:', ss) # Note: the number of sequences downloaded from UniProt may # be less than the total number of accessions. This is normal # as Pfam may return "obsolete" accessions, which will not be # downloaded here. _ = fasta_by_accession_list(uniprot_acc) _ = standardize_fasta_text(_, SEQ_TYPE_AA, pfam=True) write_fasta(_, aa_uniprot_file) else: if ope(aa_uniprot_file): osremove(aa_uniprot_file)
def dep_check_kakapolib(force=False, quiet=False): kkpl = KAKAPOLIB if not ope(kkpl): if quiet is False: Log.wrn('Compiling kakapolib.') run(['make', 'install'], cwd=DIR_C_SRC) if ope(kkpl): if quiet is False: Log.msg('kakapolib is available:', kkpl) else: Log.err('Compilation of kakapolib failed.') return None return ctypes.CDLL(kkpl)
def dnld_prot_seqs(ss, prot_acc_user, aa_prot_ncbi_file, dir_cache_prj): if len(prot_acc_user) != 0: acc_old = set() if ope(aa_prot_ncbi_file): _ = read_fasta(aa_prot_ncbi_file, SEQ_TYPE_AA) acc_old = set([x.definition.split('|')[0] for x in _]) if acc_old == set(prot_acc_user): return prot_acc_user else: pickle_file = opj(dir_cache_prj, 'ncbi_prot_metadata_cache__' + ss) if ope(pickle_file): with open(pickle_file, 'rb') as f: pa_info = pickle.load(f) print() Log.inf('Downloading protein sequences from NCBI:', ss) _ = dnld_ncbi_seqs('protein', prot_acc_user, rettype='gb', retmode='xml') prot_acc_user_new = list() for rec in _: acc_ver = rec.accession_version defn = rec.definition organism = rec.organism prot_acc_user_new.append(acc_ver) defn_new = defn.split('[' + organism + ']')[0] defn_new = defn_new.lower().strip() defn_new = defn_new.replace(' ', '_').replace('-', '_') defn_new = defn_new.replace(',', '') defn_new = defn_new[0].upper() + defn_new[1:] defn_new = acc_ver + '|' + defn_new + '|' + organism defn_new = defn_new.replace(' ', '_').replace('-', '_') rec.definition = defn_new prot_acc_user = prot_acc_user_new write_fasta(_, aa_prot_ncbi_file) else: if ope(aa_prot_ncbi_file): osremove(aa_prot_ncbi_file) return prot_acc_user
def dnld_cds_for_ncbi_prot_acc(ss, prot_acc_user, prot_cds_ncbi_file, tax, dir_cache_prj): pickle_file = opj(dir_cache_prj, 'ncbi_prot_cds_cache__' + ss) acc_old = set() if ope(pickle_file): with open(pickle_file, 'rb') as f: pickled = pickle.load(f) acc_old = set(pickled[0]) if acc_old == set(prot_acc_user): cds_rec_dict = pickled[1] Log.inf('The CDS for the dereplicated set of the user-provided ' 'NCBI protein accessions have already been ' 'downloaded:', ss) else: Log.inf('Downloading CDS for the dereplicated set of the user-provided ' 'NCBI protein accessions:', ss) cds_rec_dict = seq_records_to_dict(cds_for_prot(prot_acc_user), prepend_acc=True) with open(pickle_file, 'wb') as f: pickle.dump((prot_acc_user, cds_rec_dict), f, protocol=PICKLE_PROTOCOL) write_fasta(cds_rec_dict, prot_cds_ncbi_file)
def dep_check_bowtie2(dir_dep, os_id, force): if os_id == 'mac': url = ('https://sourceforge.net/projects/bowtie-bio/files/bowtie2/' '2.4.1/bowtie2-2.4.1-macos-x86_64.zip/download') elif os_id == 'linux': url = ('https://sourceforge.net/projects/bowtie-bio/files/bowtie2/' '2.4.1/bowtie2-2.4.1-linux-x86_64.zip/download') dnld_path = opj(dir_dep, 'bowtie2.zip') try: if force is True: raise bowtie2 = which('bowtie2') bowtie2_build = which('bowtie2-build') run([bowtie2, '-h']) run([bowtie2_build, '-h']) except Exception: try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'bowtie2')) bowtie2 = opj(dir_bin, 'bowtie2') bowtie2_build = opj(dir_bin, 'bowtie2-build') run([bowtie2, '-h']) run([bowtie2_build, '-h']) except Exception: Log.wrn('Bowtie 2 was not found on this system, trying to ' 'download.') download_file(url, dnld_path) zip_ref = zipfile.ZipFile(dnld_path, 'r') zip_ref.extractall(dir_dep) zip_ref.close() dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'bowtie2')) bowtie2 = opj(dir_bin, 'bowtie2') bowtie2_build = opj(dir_bin, 'bowtie2-build') bowtie2_execs = ('', '-align-l', '-align-l-debug', '-align-s', '-align-s-debug', '-build', '-build-l', '-build-l-debug', '-build-s', '-build-s-debug', '-inspect', '-inspect-l', '-inspect-l-debug', '-inspect-s', '-inspect-s-debug') for bt2exe in bowtie2_execs: chmod( bowtie2 + bt2exe, stat.S_IRWXU | stat.S_IRGRP | stat.S_IXGRP | stat.S_IROTH | stat.S_IXOTH) if not ope(bowtie2): Log.err('Could not download Bowtie 2.') return None, None regexp = r'^.*?version\s([\d\.]*)' v = get_dep_version([bowtie2, '--version'], regexp) Log.msg('bowtie2 is available:', v + ' ' + bowtie2) v = get_dep_version([bowtie2_build, '--version'], regexp) Log.msg('bowtie2-build is available:', v + ' ' + bowtie2_build) return bowtie2, bowtie2_build
def dnld_refseqs_for_taxid(taxid, filter_term, taxonomy, dir_cache_refseqs, query='', db='nuccore'): ft = None if filter_term == 'plastid': ft = '("chloroplast"[filter] OR "plastid"[filter])' else: ft = '("' + filter_term + '"[filter])' tax_terms = tuple(reversed(taxonomy.lineage_for_taxid(taxid)['names'])) for tax_term in tax_terms: if tax_term is None: tax_term = taxonomy.scientific_name_for_taxid(taxid) term = '"RefSeq"[Keyword] AND "{}"[Primary Organism] AND {}'.format( tax_term, ft) term = query + term accs = set(accs_eutil(search_eutil(db, term))) if len(accs) > 0: plural = 'sequences' if len(accs) == 1: plural = 'sequence' Log.msg( 'Found {} RefSeq {} {} for'.format(len(accs), filter_term, plural), tax_term) # Random sample ################################################### if len(accs) > 10: Log.wrn('Using a random sample of ten RefSeq sequences.') random.seed(a=len(accs), version=2) accs = set(random.sample(accs, 10)) ################################################################### break else: Log.wrn( 'No RefSeq {} sequences were found for'.format(filter_term), tax_term) cache_path = opj( dir_cache_refseqs, filter_term + '__' + tax_term.replace(' ', '_') + '.fasta') parsed_fasta_cache = {} if ope(cache_path): parsed_fasta_cache = read_fasta(cache_path, seq_type=SEQ_TYPE_NT, def_to_first_space=True) parsed_fasta_cache = seq_records_to_dict(parsed_fasta_cache) for acc in parsed_fasta_cache: if acc in accs: accs.remove(acc) if len(accs) > 0: parsed_fasta = dnld_ncbi_seqs(db, list(accs)) parsed_fasta = seq_records_to_dict(parsed_fasta, prepend_acc=True) parsed_fasta.update(parsed_fasta_cache) write_fasta(parsed_fasta, cache_path) return cache_path
def generateTimeseriesPSCSnapViews(self, out_dir, nCols, nRows, title='', basename='psc_img', psc_min_max=PSC_MIN_MAX): """ Create a list (size Nt = N timepoints) of figures. Each figure contains the PSC volume corresponding to the timepoint represented as Nk slices in a matrix-shape :return: """ lf = [] for t in range(self.Nt): out_graph_vol_fn = opj( out_dir, '_'.join([basename, str(t).zfill(4)]) + '.png') if not ope(out_graph_vol_fn): # Create a figure fig = plt.figure(figsize=(nCols, nRows)) gs = GridSpec(nRows, nCols) gs.update(wspace=0.0, hspace=0.0) # set the spacing between axes. for i in range(nRows): for j in range(nCols): z = i * nCols + j if z <= self.Nt: im = self.f_psc_img[:, :, z, t].T ax = plt.subplot(gs[i, j]) ims = ax.imshow(im, vmin=-psc_min_max, vmax=psc_min_max, cmap='seismic') ax.set_xticks([]) ax.set_yticks([]) ax.axis('off') # for tissueName, bin_map, tcol in zip(TISSUE_NAMES, [self.gm_bin,self.wm_bin,self.csf_bin], TISSUE_COLORS): # cmap1 = colors.LinearSegmentedColormap.from_list('my_cmap', [COL_TRANSP, tcol], 256) # mask = bin_map[:,:,z].T # ax.imshow(mask, cmap=cmap1, interpolation='none', alpha=.5) plt.suptitle(title + ' vol {0}/{1}'.format(t + 1, self.Nt)) # Try to add colorbar at the bottom fig.subplots_adjust(right=0.9) cbar_ax = fig.add_axes([0.9, 0.25, 0.01, 0.5]) #left bottom width height cbar = fig.colorbar(ims, ticks=[-psc_min_max, 0, psc_min_max], cax=cbar_ax) cbar.ax.set_yticklabels([ '-{0}%'.format(psc_min_max), '0', '+{0}%'.format(psc_min_max) ]) # vertically oriented colorbar #cbar.set_label('Signal') # Save plt.savefig(out_graph_vol_fn) lf.append(out_graph_vol_fn) plt.close() return lf
def makeblastdb_fq(se_fastq_files, pe_fastq_files, dir_blast_fa_trim, makeblastdb, fpatt): if len(se_fastq_files) > 0 or len(pe_fastq_files) > 0: print() Log.inf('Building BLAST databases for reads.') if makeblastdb is None: Log.err('makeblastdb is not available. Cannot continue. Exiting.') exit(0) for se in se_fastq_files: dir_blast_fa_trim_sample = opj(dir_blast_fa_trim, se) fa_path = se_fastq_files[se]['filter_path_fa'] out_f = opj(dir_blast_fa_trim_sample, se) se_fastq_files[se]['blast_db_path'] = out_f if ope(dir_blast_fa_trim_sample): Log.msg('BLAST database already exists:', se) else: make_dirs(dir_blast_fa_trim_sample) Log.msg(basename(fa_path)) make_blast_db(exec_file=makeblastdb, in_file=fa_path, out_file=out_f, title=se, dbtype='nucl') for pe in pe_fastq_files: dir_blast_fa_trim_sample = opj(dir_blast_fa_trim, pe) fa_paths = pe_fastq_files[pe]['filter_path_fa'] out_fs = [x.replace('@D@', dir_blast_fa_trim_sample) for x in fpatt] out_fs = [x.replace('@N@', pe) for x in out_fs] pe_fastq_files[pe]['blast_db_path'] = out_fs if ope(dir_blast_fa_trim_sample): Log.msg('BLAST database already exists:', pe) else: make_dirs(dir_blast_fa_trim_sample) pe_trim_files = zip(fa_paths, out_fs) for x in pe_trim_files: Log.msg(basename(x[0])) make_blast_db(exec_file=makeblastdb, in_file=x[0], out_file=x[1], title=basename(x[1]), dbtype='nucl')
def combine_aa_fasta(ss, fasta_files, aa_queries_file): Log.inf('Combining all AA query sequences:', ss) _ = '' for fasta_file in fasta_files: if ope(fasta_file): with open(fasta_file, 'r') as f: _ = _ + f.read() with open(aa_queries_file, 'w') as f: f.write(_)
def user_protein_accessions(ss, prot_acc_user, dir_cache_prj, taxonomy): if len(prot_acc_user) > 0: Log.inf('Reading user provided protein accessions:', ss) print() pickle_file = opj(dir_cache_prj, 'ncbi_prot_metadata_cache__' + ss) acc_old = set() if ope(pickle_file): with open(pickle_file, 'rb') as f: pickled = pickle.load(f) acc_old = set([x['accessionversion'] for x in pickled]) if acc_old == set(prot_acc_user): pa_info = pickled else: pa_info = summary_eutil('protein', prot_acc_user) prot_acc = [] prot_info_to_print = [] max_acc_len = 0 for pa in pa_info: acc = pa['accessionversion'] prot_acc.append(acc) title = pa['title'] title_split = title.split('[') taxid = pa['taxid'] if 'organism' in pa: organism = pa['organism'] else: organism = taxonomy.scientific_name_for_taxid(taxid) pa['organism'] = organism # title = title_split[0] # title = title.lower().strip() # title = title.replace('_', ' ').replace('-', ' ') # title = title.replace(',', '') # title = title[0].upper() + title[1:] + ' [' + organism + ']' max_acc_len = max(max_acc_len, len(acc)) prot_info_to_print.append((title, acc)) prot_info_to_print = sorted(prot_info_to_print) for pi in prot_info_to_print: title = pi[0] acc = pi[1] if len(title) > 80: title = title[:77] + '...' Log.msg(acc.rjust(max_acc_len) + ':', title, False) with open(pickle_file, 'wb') as f: pickle.dump(pa_info, f, protocol=PICKLE_PROTOCOL) return prot_acc else: return prot_acc_user
def dep_check_sra_toolkit(dir_dep, os_id, dist_id, debian_dists, redhat_dists, force): if os_id == 'mac': url = ('https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.10.8/' 'sratoolkit.2.10.8-mac64.tar.gz') elif os_id == 'linux': if dist_id in debian_dists: url = ('https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.10.8/' 'sratoolkit.2.10.8-ubuntu64.tar.gz') elif dist_id in redhat_dists: url = ('https://ftp-trace.ncbi.nlm.nih.gov/sra/sdk/2.10.8/' 'sratoolkit.2.10.8-centos_linux64.tar.gz') dnld_path = opj(dir_dep, 'sra-toolkit.tar.gz') fasterq_dump = None try: if force is True: raise fasterq_dump = which('fasterq-dump') dir_bin = dirname(fasterq_dump).strip('bin') _ensure_vdb_cfg(dir_bin) run(fasterq_dump) except Exception: try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'sratoolkit')) _ensure_vdb_cfg(dir_bin) fasterq_dump = opj(dir_bin, 'bin', 'fasterq-dump') run(fasterq_dump) except Exception: Log.wrn('SRA Toolkit was not found on this system, trying to ' 'download.') download_file(url, dnld_path) tar_ref = tarfile.open(dnld_path, 'r:gz') tar_ref.extractall(dir_dep) tar_ref.close() dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'sratoolkit')) fasterq_dump = opj(dir_bin, 'bin', 'fasterq-dump') _ensure_vdb_cfg(dir_bin) if not ope(fasterq_dump): Log.err('Could not download SRA Toolkit.') return None v = get_dep_version([fasterq_dump, '--version'], r':\s([\d\.]*)') if v == '?': v = get_dep_version([fasterq_dump, '--version'], r'version\s([\d\.]*)') Log.msg('fasterq-dump is available:', v + ' ' + fasterq_dump) return fasterq_dump
def dep_check_vsearch(dir_dep, os_id, dist_id, debian_dists, redhat_dists, force): if os_id == 'mac': url = ('https://github.com/torognes/vsearch/releases/download/v2.15.0/' 'vsearch-2.15.0-macos-x86_64.tar.gz') elif os_id == 'linux': if dist_id in debian_dists: url = ('https://github.com/torognes/vsearch/releases/download/' 'v2.15.0/vsearch-2.15.0-linux-x86_64.tar.gz') elif dist_id in redhat_dists: url = ('https://github.com/torognes/vsearch/releases/download/' 'v2.15.0/vsearch-2.15.0-linux-x86_64.tar.gz') dnld_path = opj(dir_dep, 'vsearch.tar.gz') try: if force is True: raise vsearch = which('vsearch') run(vsearch) except Exception: try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'vsearch')) vsearch = opj(dir_bin, 'bin', 'vsearch') run(vsearch) except Exception: Log.wrn( 'Vsearch was not found on this system, trying to download.') download_file(url, dnld_path) tar_ref = tarfile.open(dnld_path, 'r:gz') tar_ref.extractall(dir_dep) tar_ref.close() try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'vsearch')) vsearch = opj(dir_bin, 'bin', 'vsearch') if not ope(vsearch): Log.err('Could not download Vsearch.') return None else: run(vsearch) except Exception: Log.err('Vsearch was downloaded, but does not execute.') Log.msg('Try downloading and installing it manually from: ' 'https://github.com/torognes/vsearch') return None v = get_dep_version([vsearch, '-version'], r'vsearch\sv([\d\.]*)') Log.msg('Vsearch is available:', v + ' ' + vsearch) return vsearch
def dep_check_trimmomatic(dir_dep): url = ('http://www.usadellab.org/cms/uploads/supplementary/Trimmomatic/' 'Trimmomatic-0.39.zip') dnld_path = opj(dir_dep, 'Trimmomatic-0.39.zip') dir_bin = opj(dir_dep, 'Trimmomatic-0.39') trimmomatic = opj(dir_bin, 'trimmomatic-0.39.jar') if not ope(trimmomatic): download_file(url, dnld_path) zip_ref = zipfile.ZipFile(dnld_path, 'r') zip_ref.extractall(dir_dep) zip_ref.close() if not ope(trimmomatic): Log.err('Could not download Trimmomatic.') return None, None v = get_dep_version(['java', '-jar', trimmomatic, '-version'], r'\d+\.\d+') Log.msg('Trimmomatic is available:', v + ' ' + trimmomatic) path_adapters = _write_trimmomatic_adapters_file(dir_dep) return trimmomatic, path_adapters
def user_entrez_search(ss, queries, dir_cache_prj, requery_after): dnld_needed = True accs = [] if len(queries) != 0: time_stamp_now = datetime.datetime.now() time_stamp_file = opj(dir_cache_prj, 'ncbi_prot_time_stamp__' + ss) time_stamp = None if ope(time_stamp_file): with open(time_stamp_file, 'rb') as f: time_stamp = pickle.load(f) time_diff = time_stamp_now - time_stamp if time_diff < requery_after: dnld_needed = False if dnld_needed is True: Log.inf('Searching for protein sequences on NCBI:', ss) for q in queries: esearch_results = search_eutil(db='protein', term=q) accs = accs + accs_eutil(esearch_results) with open(time_stamp_file, 'wb') as f: pickle.dump(datetime.datetime.now(), f, protocol=PICKLE_PROTOCOL) else: days = requery_after.total_seconds() / 60 / 60 / 24 days = '{:.2f}'.format(days) Log.inf( 'NCBI results are less than ' + days + ' day(s) old. Will not search again.:', ss) pickle_file = opj(dir_cache_prj, 'ncbi_prot_metadata_cache__' + ss) if ope(pickle_file): with open(pickle_file, 'rb') as f: pickled = pickle.load(f) accs = [x['accessionversion'] for x in pickled] return accs
def dep_check_spades(dir_dep, os_id, force): if os_id == 'mac': url = ('http://cab.spbu.ru/files/release3.14.1/' 'SPAdes-3.14.1-Darwin.tar.gz') elif os_id == 'linux': url = ('http://cab.spbu.ru/files/release3.14.1/' 'SPAdes-3.14.1-Linux.tar.gz') dnld_path = opj(dir_dep, 'SPAdes.tar.gz') try: if force is True: raise spades = which('spades.py') run([PY3, spades]) except Exception: try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'SPAdes')) spades = opj(dir_bin, 'bin', 'spades.py') run([PY3, spades]) except Exception: Log.wrn('SPAdes was not found on this system, trying to download.') try: download_file(url, dnld_path) tar_ref = tarfile.open(dnld_path, 'r:gz') tar_ref.extractall(dir_dep) tar_ref.close() except Exception: Log.err('Could not download SPAdes.') return None try: dir_bin = opj(dir_dep, get_dep_dir(dir_dep, 'SPAdes')) spades = opj(dir_bin, 'bin', 'spades.py') # replace_line_in_file(spades, # '#!/usr/bin/env python', # '#!/usr/bin/env python3') if ope(spades): run([PY3, spades]) else: Log.err('Could not download SPAdes.') return None except Exception: Log.err('SPAdes was downloaded, but does not execute.') return None v = get_dep_version([PY3, spades, '--version'], r'^.*SPAdes.*v([\d\.]*)') Log.msg('SPAdes is available:', v + ' ' + spades) return spades
def filtered_fq_to_fa(se_fastq_files, pe_fastq_files, dir_fa_trim_data, seqtk, fpatt): if len(se_fastq_files) > 0 or len(pe_fastq_files) > 0: print() Log.inf('Converting FASTQ to FASTA using Seqtk.') if seqtk is None: Log.err('seqtk is not available. Cannot continue. Exiting.') exit(0) for se in se_fastq_files: dir_fa_trim_data_sample = opj(dir_fa_trim_data, se) fq_path = se_fastq_files[se]['filter_path_fq'] out_f = opj(dir_fa_trim_data_sample, se + '.fasta') se_fastq_files[se]['filter_path_fa'] = out_f if ope(dir_fa_trim_data_sample): Log.msg('Filtered FASTA files already exist:', se) else: make_dirs(dir_fa_trim_data_sample) Log.msg(basename(fq_path)) seqtk_fq_to_fa(seqtk, fq_path, out_f) for pe in pe_fastq_files: dir_fa_trim_data_sample = opj(dir_fa_trim_data, pe) fq_paths = pe_fastq_files[pe]['filter_path_fq'] out_fs = [x.replace('@D@', dir_fa_trim_data_sample) for x in fpatt] out_fs = [x.replace('@N@', pe) for x in out_fs] pe_fastq_files[pe]['filter_path_fa'] = out_fs if ope(dir_fa_trim_data_sample): Log.msg('Filtered FASTA files already exist:', pe) else: make_dirs(dir_fa_trim_data_sample) pe_trim_files = zip(fq_paths, out_fs) for x in pe_trim_files: Log.msg(basename(x[0])) seqtk_fq_to_fa(seqtk, x[0], x[1])
def _write_trimmomatic_adapters_file(dir_dep): path_adapters = opj(dir_dep, 'trimmomatic_adapters.fasta') adapters = ('>TruSeq2_SE' 'AGATCGGAAGAGCTCGTATGCCGTCTTCTGCTTG' '>TruSeq2_PE_f' 'AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT' '>TruSeq2_PE_r' 'AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG' '>TruSeq3_IndexedAdapter' 'AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC' '>TruSeq3_UniversalAdapter' 'AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA' '>PrefixPE/1' 'AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT' '>PrefixPE/2' 'CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT' '>PCR_Primer1' 'AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT' '>PCR_Primer1_rc' 'AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCATT' '>PCR_Primer2' 'CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCT' '>PCR_Primer2_rc' 'AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCTCGTATGCCGTCTTCTGCTTG' '>FlowCell1' 'TTTTTTTTTTAATGATACGGCGACCACCGAGATCTACAC' '>FlowCell2' 'TTTTTTTTTTCAAGCAGAAGACGGCATACGA' '>PrefixPE/1' 'TACACTCTTTCCCTACACGACGCTCTTCCGATCT' '>PrefixPE/2' 'GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT' '>PE1' 'TACACTCTTTCCCTACACGACGCTCTTCCGATCT' '>PE1_rc' 'AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTA' '>PE2' 'GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT' '>PE2_rc' 'AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC') if not ope(path_adapters): Log.msg('Writing Trimmomatic adapter files: ' + path_adapters) with open(path_adapters, mode='w') as f: f.write(adapters) return path_adapters
def saveBinaryMasks(self, outdir, base): """ Saves the computed binary masks in directory :param outdir: string, path to the output directory :param base: string, prefix for the filenaming """ self.getCarpetData() total_bin = self.csf_bin + 2 * self.gm_bin + 3 * self.wm_bin arrays = [self.gm_bin, self.wm_bin, self.csf_bin, total_bin] tissues = TISSUE_NAMES + ['all'] for arr, tissue in zip(arrays, tissues): img = nib.Nifti1Image(arr, affine=self.f_aff, header=self.f_hdr) basename = '_'.join([base, tissue, 'binary']) + '.nii.gz' bin_fn = opj(outdir, basename) if not ope(bin_fn): nib.save(img, filename=bin_fn)
def _should_run_bt2(taxid, taxonomy, bt2_order, bowtie2, bowtie2_build): dbs = OrderedDict() for x in bt2_order: db_path_ok = False if x == MT: if taxonomy.is_eukaryote(taxid) is True: if bt2_order[MT] == '': dbs[MT] = MT db_path_ok = True elif x == PT: if taxonomy.is_eukaryote(taxid) is True: if taxonomy.contains_plastid(taxid) is True: if bt2_order[PT] == '': dbs[PT] = PT db_path_ok = True if db_path_ok is False: db_path = bt2_order[x] if ope(db_path) and isfile(db_path): dbs[x] = db_path else: Log.err('File not found:', db_path) exit(1) if len(dbs) > 0: if bowtie2 is None: Log.err('bowtie2 is not available. ' + 'Cannot continue. Exiting.') exit(0) if bowtie2_build is None: Log.err('bowtie2-build is not available. ' + 'Cannot continue. Exiting.') exit(0) return dbs
def pfam_uniprot_accessions(ss, pfam_acc, tax_ids, dir_cache_pfam_acc): if len(pfam_acc) > 0: Log.inf('Downloading UniProt accessions for Pfam accessions:', ss) pfam_seqs_list = [] for pa in pfam_acc: pfam_id = pfam_entry(pa)[0]['id'] Log.msg(pa + ':', pfam_id) _ = opj(dir_cache_pfam_acc, pa + '__' + ss) if ope(_): with open(_, 'rb') as f: acc = pickle.load(f) pfam_seqs_list = pfam_seqs_list + acc else: # Note: the results may include "obsolete" accessions. # This is not a problem, they will not appear in the set of # downloaded sequences from UniProt. acc = pfam_seqs(query=pa) pfam_seqs_list = pfam_seqs_list + acc with open(_, 'wb') as f: pickle.dump(acc, f, protocol=PICKLE_PROTOCOL) pfam_uniprot_acc = prot_ids_for_tax_ids(pfam_seqs_list, tax_ids) return pfam_uniprot_acc
def makeblastdb_assemblies(assemblies, dir_prj_blast_assmbl, makeblastdb): if len(assemblies) > 0: print() Log.inf('Building BLAST databases for assemblies.') if makeblastdb is None: Log.err('makeblastdb is not available. Cannot continue. Exiting.') exit(0) for a in assemblies: assmbl_name = a['name'] assmbl_blast_db_dir = opj(dir_prj_blast_assmbl, assmbl_name) assmbl_blast_db_file = opj(assmbl_blast_db_dir, assmbl_name) a['blast_db_path'] = assmbl_blast_db_file if ope(assmbl_blast_db_dir): Log.msg('BLAST database already exists:', assmbl_name) else: Log.msg(assmbl_name) make_dirs(assmbl_blast_db_dir) make_blast_db(exec_file=makeblastdb, in_file=a['path'], out_file=assmbl_blast_db_file, title=assmbl_name)
## The classes folder name. class_folder_name = args.classdir ## The classes folder path. class_folder_path = opa(opj(output_path, class_folder_name)) # # Does the class subfolder already exist? if not os.path.isdir(class_folder_path): lg.info(" * Making class folder path '%s'" % (class_folder_path)) os.mkdir(class_folder_path) else: lg.info(" * Class folder '%s' already exists." % (class_folder_name)) lg.info(" *") ## The __init__.py file path. init_file_path = opj(class_folder_path, "__init__.py") # if not ope(init_file_path): with open(init_file_path, "w") as f: f.write("") # Write out the class file string to the output path. with open(os.path.join(output_path, class_folder_name, "%s.py"%(class_name_lower)), "w") as cf: cf.write(sc) # Write out the test file string to the output path. with open(os.path.join(output_path, class_folder_name, "test_%s.py"%(class_name_lower)), "w") as tf: tf.write(st)
def main(): """Run the script.""" # Prepare initial logger (before we know the log file path) -------------- prj_log_file_suffix = time_stamp() + '.log' log_stream = StringIO() Log.set_colors(COLORS) Log.set_file(log_stream) Log.set_write(True) # Prepare configuration directory ---------------------------------------- if ope(DIR_CFG): Log.inf('Found configuration directory:', DIR_CFG) else: Log.wrn('Creating configuration directory:', DIR_CFG) make_dirs(DIR_CFG) print() # Check for dependencies ------------------------------------------------- Log.inf('Checking for dependencies.') make_dirs(DIR_DEP) make_dirs(DIR_KRK) seqtk = deps.dep_check_seqtk(DIR_DEP, FORCE_DEPS) trimmomatic, adapters = deps.dep_check_trimmomatic(DIR_DEP) fasterq_dump = deps.dep_check_sra_toolkit(DIR_DEP, OS_ID, DIST_ID, DEBIAN_DISTS, REDHAT_DISTS, FORCE_DEPS) makeblastdb, _, tblastn = deps.dep_check_blast(DIR_DEP, OS_ID, DIST_ID, DEBIAN_DISTS, REDHAT_DISTS, FORCE_DEPS) vsearch = deps.dep_check_vsearch(DIR_DEP, OS_ID, DIST_ID, DEBIAN_DISTS, REDHAT_DISTS, FORCE_DEPS) spades = deps.dep_check_spades(DIR_DEP, OS_ID, FORCE_DEPS) bowtie2, bowtie2_build = deps.dep_check_bowtie2(DIR_DEP, OS_ID, FORCE_DEPS) rcorrector = deps.dep_check_rcorrector(DIR_DEP, FORCE_DEPS) kraken2, kraken2_build = deps.dep_check_kraken2(DIR_DEP, OS_ID, RELEASE_NAME, FORCE_DEPS) print() kraken2_dbs = deps.dnld_kraken2_dbs(DIR_KRK) if INSTALL_DEPS is True or DNLD_KRAKEN_DBS is True: exit(0) print() # Initialize NCBI taxonomy database -------------------------------------- tax = Taxonomy() if tax.is_initialized() is False: tax.init(data_dir_path=DIR_TAX, logger=Log) print() # Parse configuration file ----------------------------------------------- Log.inf('Reading configuration file:', CONFIG_FILE_PATH) _ = config_file_parse(CONFIG_FILE_PATH, tax) allow_no_stop_cod = _['allow_no_stop_cod'] allow_no_strt_cod = _['allow_no_strt_cod'] allow_non_aug = _['allow_non_aug'] blast_1_evalue = _['blast_1_evalue'] blast_1_max_hsps = _['blast_1_max_hsps'] blast_1_qcov_hsp_perc = _['blast_1_qcov_hsp_perc'] blast_1_best_hit_overhang = _['blast_1_best_hit_overhang'] blast_1_best_hit_score_edge = _['blast_1_best_hit_score_edge'] blast_1_max_target_seqs = _['blast_1_max_target_seqs'] blast_2_evalue = _['blast_2_evalue'] blast_2_max_hsps = _['blast_2_max_hsps'] blast_2_qcov_hsp_perc = _['blast_2_qcov_hsp_perc'] blast_2_best_hit_overhang = _['blast_2_best_hit_overhang'] blast_2_best_hit_score_edge = _['blast_2_best_hit_score_edge'] blast_2_max_target_seqs = _['blast_2_max_target_seqs'] dir_out = _['output_directory'] email = _['email'] requery_after = _['requery_after'] fq_pe = _['fq_pe'] fq_se = _['fq_se'] should_run_rcorrector = _['should_run_rcorrector'] should_run_ipr = _['should_run_ipr'] bt2_order = _['bt2_order'] kraken_confidence = _['kraken_confidence'] krkn_order = _['krkn_order'] prepend_assmbl = _['prepend_assmbl'] prj_name = _['project_name'] sras = _['sras'] tax_group = _['tax_group'] # tax_group_name = _['tax_group_name'] tax_ids_user = _['tax_ids'] user_assemblies = _['assmbl'] print() # Parse search strategies file ------------------------------------------- if SS_FILE_PATH is not None: Log.inf('Reading search strategies file:', SS_FILE_PATH) sss = ss_file_parse(SS_FILE_PATH) else: Log.wrn('Search strategies file was not provided.\n' + 'Will process reads, assemblies and then stop.') sss = dict() print() # Create output directory ------------------------------------------------ if dir_out is not None: if ope(dir_out): Log.inf('Found output directory:', dir_out) else: Log.wrn('Creating output directory:', dir_out) make_dirs(dir_out) print() # Write Kakapo version information to the output directory --------------- version_file = opj(dir_out, 'kakapo_version.txt') if ope(version_file): with open(version_file, 'r') as f: version_prev = f.read().strip() if __version__ != version_prev: Log.wrn('The output directory contains data produced by a ' + 'different version of Kakapo: ' + version_prev + '.\nThe currently running version is: ' + __version__ + '.\n' + 'Delete "kakapo_version.txt" file located in the ' + 'output directory if you would like to continue.') exit(0) with open(version_file, 'w') as f: f.write(__version__) # Create subdirectories in the output directory -------------------------- _ = prepare_output_directories(dir_out, prj_name) dir_temp = _['dir_temp'] dir_cache_pfam_acc = _['dir_cache_pfam_acc'] dir_cache_fq_minlen = _['dir_cache_fq_minlen'] dir_cache_prj = _['dir_cache_prj'] dir_cache_refseqs = _['dir_cache_refseqs'] dir_prj_logs = _['dir_prj_logs'] dir_prj_queries = _['dir_prj_queries'] dir_fq_data = _['dir_fq_data'] dir_fq_cor_data = _['dir_fq_cor_data'] dir_fq_trim_data = _['dir_fq_trim_data'] dir_fq_filter_bt2_data = _['dir_fq_filter_bt2_data'] dir_fq_filter_krkn2_data = _['dir_fq_filter_krkn2_data'] dir_fa_trim_data = _['dir_fa_trim_data'] dir_blast_fa_trim = _['dir_blast_fa_trim'] dir_prj_blast_results_fa_trim = _['dir_prj_blast_results_fa_trim'] dir_prj_vsearch_results_fa_trim = _['dir_prj_vsearch_results_fa_trim'] dir_prj_spades_assemblies = _['dir_prj_spades_assemblies'] dir_prj_blast_assmbl = _['dir_prj_blast_assmbl'] dir_prj_assmbl_blast_results = _['dir_prj_assmbl_blast_results'] dir_prj_transcripts = _['dir_prj_transcripts'] dir_prj_ips = _['dir_prj_ips'] dir_prj_transcripts_combined = _['dir_prj_transcripts_combined'] # Prepare logger --------------------------------------------------------- prj_log_file = opj(dir_prj_logs, prj_name + '_' + prj_log_file_suffix) with open(prj_log_file, 'w') as f: f.write(SCRIPT_INFO.strip() + '\n\n' + log_stream.getvalue()) Log.set_colors(COLORS) Log.set_file(prj_log_file) Log.set_write(True) log_stream.close() # Resolve descending taxonomy nodes -------------------------------------- tax_ids = tax.all_descending_taxids_for_taxids([tax_group]) # Pfam uniprot accessions ------------------------------------------------ pfam_uniprot_acc = OrderedDict() for ss in sss: pfam_acc = sss[ss]['pfam_families'] pfam_uniprot_acc[ss] = pfam_uniprot_accessions(ss, pfam_acc, tax_ids, dir_cache_pfam_acc) # Download Pfam uniprot sequences if needed ------------------------------ aa_uniprot_files = OrderedDict() for ss in sss: aa_uniprot_files[ss] = opj(dir_prj_queries, 'aa_uniprot__' + ss + '.fasta') # ToDo: add support for the requery_after parameter. dnld_pfam_uniprot_seqs(ss, pfam_uniprot_acc[ss], aa_uniprot_files[ss], dir_cache_prj) # User provided entrez query --------------------------------------------- prot_acc_user_from_query = OrderedDict() for ss in sss: entrez_queries = sss[ss]['entrez_search_queries'] prot_acc_user_from_query[ss] = user_entrez_search( ss, entrez_queries, dir_cache_prj, requery_after) # User provided protein accessions --------------------------------------- prot_acc_user = OrderedDict() for ss in sss: print() prot_acc_all = sorted( set(sss[ss]['ncbi_accessions_aa'] + prot_acc_user_from_query[ss])) prot_acc_user[ss] = user_protein_accessions(ss, prot_acc_all, dir_cache_prj, tax) # Download from NCBI if needed ------------------------------------------- aa_prot_ncbi_files = OrderedDict() for ss in sss: aa_prot_ncbi_files[ss] = opj(dir_prj_queries, 'aa_prot_ncbi__' + ss + '.fasta') prot_acc_user[ss] = dnld_prot_seqs(ss, prot_acc_user[ss], aa_prot_ncbi_files[ss], dir_cache_prj) # User provided protein sequences ---------------------------------------- aa_prot_user_files = OrderedDict() for ss in sss: user_queries = sss[ss]['fasta_files_aa'] aa_prot_user_files[ss] = opj(dir_prj_queries, 'aa_prot_user__' + ss + '.fasta') user_aa_fasta(ss, user_queries, aa_prot_user_files[ss]) # Combine all AA queries ------------------------------------------------- print() aa_queries_files = OrderedDict() for ss in sss: aa_queries_files[ss] = opj(dir_prj_queries, 'aa_all__' + ss + '.fasta') combine_aa_fasta(ss, [ aa_uniprot_files[ss], aa_prot_ncbi_files[ss], aa_prot_user_files[ss] ], aa_queries_files[ss]) # Filter AA queries ------------------------------------------------------ prot_acc_user_filtered = OrderedDict() for ss in sss: min_query_length = sss[ss]['min_query_length'] max_query_length = sss[ss]['max_query_length'] max_query_identity = sss[ss]['max_query_identity'] # Dereplicate all queries filter_queries(ss, aa_queries_files[ss], min_query_length, max_query_length, max_query_identity, vsearch, prot_acc_user[ss], overwrite=True) # Dereplicate only NCBI queries. CDS for these will be downloaded # later for reference. if ope(aa_prot_ncbi_files[ss]): prot_acc_user_filtered[ss] = filter_queries(ss, aa_prot_ncbi_files[ss], min_query_length, max_query_length, max_query_identity, vsearch, prot_acc_user[ss], overwrite=False, logging=False) # Download SRA run metadata if needed ------------------------------------ sra_runs_info, sras_acceptable = dnld_sra_info(sras, dir_cache_prj) # Download SRA run FASTQ files if needed --------------------------------- x, y, z = dnld_sra_fastq_files(sras_acceptable, sra_runs_info, dir_fq_data, fasterq_dump, THREADS, dir_temp) se_fastq_files_sra = x pe_fastq_files_sra = y sra_runs_info = z # User provided FASTQ files ---------------------------------------------- se_fastq_files_usr, pe_fastq_files_usr = user_fastq_files(fq_se, fq_pe) # Collate FASTQ file info ------------------------------------------------ se_fastq_files = se_fastq_files_sra.copy() se_fastq_files.update(se_fastq_files_usr) pe_fastq_files = pe_fastq_files_sra.copy() pe_fastq_files.update(pe_fastq_files_usr) def gc_tt(k, d, tax): taxid = d[k]['tax_id'] gc = tax.genetic_code_for_taxid(taxid) d[k]['gc_id'] = gc d[k]['gc_tt'] = TranslationTable(gc) gc_mito = None tt_mito = None gc_plastid = None tt_plastid = None if tax.is_eukaryote(taxid) is True: gc_mito = tax.mito_genetic_code_for_taxid(taxid) if gc_mito != '0': tt_mito = TranslationTable(gc_mito) if tax.contains_plastid(taxid) is True: gc_plastid = tax.plastid_genetic_code_for_taxid(taxid) if gc_plastid != '0': tt_plastid = TranslationTable(gc_plastid) d[k]['gc_id_mito'] = gc_mito d[k]['gc_tt_mito'] = tt_mito d[k]['gc_id_plastid'] = gc_plastid d[k]['gc_tt_plastid'] = tt_plastid for se in se_fastq_files: gc_tt(se, se_fastq_files, tax) for pe in pe_fastq_files: gc_tt(pe, pe_fastq_files, tax) # Minimum acceptable read length ----------------------------------------- min_accept_read_len(se_fastq_files, pe_fastq_files, dir_temp, dir_cache_fq_minlen, vsearch) # Run Rcorrector --------------------------------------------------------- run_rcorrector(se_fastq_files, pe_fastq_files, dir_fq_cor_data, rcorrector, THREADS, dir_temp, should_run_rcorrector) # File name patterns ----------------------------------------------------- a, b, c, d, e = file_name_patterns() pe_trim_fq_file_patterns = a pe_trim_fa_file_patterns = b pe_blast_db_file_patterns = c pe_blast_results_file_patterns = d pe_vsearch_results_file_patterns = e # Run Trimmomatic -------------------------------------------------------- run_trimmomatic(se_fastq_files, pe_fastq_files, dir_fq_trim_data, trimmomatic, adapters, pe_trim_fq_file_patterns, THREADS) # Run Bowtie 2 ----------------------------------------------------------- run_bt2_fq(se_fastq_files, pe_fastq_files, dir_fq_filter_bt2_data, bowtie2, bowtie2_build, THREADS, dir_temp, bt2_order, pe_trim_fq_file_patterns, tax, dir_cache_refseqs) # Run Kraken2 ------------------------------------------------------------ run_kraken2(krkn_order, kraken2_dbs, se_fastq_files, pe_fastq_files, dir_fq_filter_krkn2_data, kraken_confidence, kraken2, THREADS, dir_temp, pe_trim_fq_file_patterns) se_fastq_files = OrderedDict(se_fastq_files) pe_fastq_files = OrderedDict(pe_fastq_files) se_fastq_files = OrderedDict( sorted(se_fastq_files.items(), key=lambda x: x[1]['filter_path_fq'])) pe_fastq_files = OrderedDict( sorted(pe_fastq_files.items(), key=lambda x: x[1]['filter_path_fq'])) # Stop After Filter ------------------------------------------------------ if STOP_AFTER_FILTER is True: Log.wrn('Stopping after Kraken2/Bowtie2 filtering step as requested.') exit(0) # Convert filtered FASTQ files to FASTA ---------------------------------- filtered_fq_to_fa(se_fastq_files, pe_fastq_files, dir_fa_trim_data, seqtk, pe_trim_fa_file_patterns) # Run makeblastdb on reads ----------------------------------------------- makeblastdb_fq(se_fastq_files, pe_fastq_files, dir_blast_fa_trim, makeblastdb, pe_blast_db_file_patterns) # Check if there are any query sequences. any_queries = False for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: continue else: any_queries = True # Run tblastn on reads --------------------------------------------------- for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: continue changed_blast_1 = run_tblastn_on_reads( se_fastq_files, pe_fastq_files, aa_queries_files[ss], tblastn, blast_1_evalue, blast_1_max_hsps, blast_1_qcov_hsp_perc, blast_1_best_hit_overhang, blast_1_best_hit_score_edge, blast_1_max_target_seqs, dir_prj_blast_results_fa_trim, pe_blast_results_file_patterns, ss, THREADS, seqtk, vsearch, dir_cache_prj) if changed_blast_1 is True: if ope(dir_prj_vsearch_results_fa_trim): rmtree(dir_prj_vsearch_results_fa_trim) if ope(dir_prj_spades_assemblies): rmtree(dir_prj_spades_assemblies) if ope(dir_prj_blast_assmbl): rmtree(dir_prj_blast_assmbl) if ope(dir_prj_assmbl_blast_results): rmtree(dir_prj_assmbl_blast_results) if ope(dir_prj_transcripts): rmtree(dir_prj_transcripts) if ope(dir_prj_transcripts_combined): rmtree(dir_prj_transcripts_combined) prepare_output_directories(dir_out, prj_name) # Run vsearch on reads --------------------------------------------------- # should_run_vsearch = False # for ss in sss: # if stat(aa_queries_files[ss]).st_size == 0: # continue # else: # should_run_vsearch = True # break # if should_run_vsearch is True: # print() # Log.inf('Checking if Vsearch should be run.') for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: continue print() Log.inf('Checking if Vsearch should be run:', ss) run_vsearch_on_reads(se_fastq_files, pe_fastq_files, vsearch, dir_prj_vsearch_results_fa_trim, pe_vsearch_results_file_patterns, ss, seqtk) # Run SPAdes ------------------------------------------------------------- # should_run_spades = False # for ss in sss: # if stat(aa_queries_files[ss]).st_size == 0: # continue # else: # should_run_spades = True # break # if should_run_spades is True: # print() # Log.inf('Checking if SPAdes should be run.') for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: for se in se_fastq_files: se_fastq_files[se]['spades_assembly' + '__' + ss] = None for pe in pe_fastq_files: pe_fastq_files[pe]['spades_assembly' + '__' + ss] = None continue print() Log.inf('Checking if SPAdes should be run:', ss) run_spades(se_fastq_files, pe_fastq_files, dir_prj_spades_assemblies, spades, dir_temp, ss, THREADS, RAM) # Combine SPAdes and user provided assemblies ---------------------------- assemblies = combine_assemblies(se_fastq_files, pe_fastq_files, user_assemblies, tax, sss) # Run makeblastdb on assemblies ----------------------------------------- makeblastdb_assemblies(assemblies, dir_prj_blast_assmbl, makeblastdb) if any_queries is False: Log.wrn('No query sequences were provided.') # Run tblastn on assemblies ---------------------------------------------- for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: continue should_run_tblastn = False for a in assemblies: assmbl_src = a['src'] assmbl_name = a['name'] if assmbl_src != 'user_fasta': if assmbl_name.endswith('__' + ss): should_run_tblastn = True break else: should_run_tblastn = True break if should_run_tblastn is False: print() Log.inf('Will not run BLAST. No transcripts exist:', ss) continue blast_2_evalue_ss = sss[ss]['blast_2_evalue'] blast_2_max_hsps_ss = sss[ss]['blast_2_max_hsps'] blast_2_qcov_hsp_perc_ss = sss[ss]['blast_2_qcov_hsp_perc'] blast_2_best_hit_overhang_ss = sss[ss]['blast_2_best_hit_overhang'] blast_2_best_hit_score_edge_ss = sss[ss]['blast_2_best_hit_score_edge'] blast_2_max_target_seqs_ss = sss[ss]['blast_2_max_target_seqs'] if blast_2_evalue_ss is None: blast_2_evalue_ss = blast_2_evalue if blast_2_max_hsps_ss is None: blast_2_max_hsps_ss = blast_2_max_hsps if blast_2_qcov_hsp_perc_ss is None: blast_2_qcov_hsp_perc_ss = blast_2_qcov_hsp_perc if blast_2_best_hit_overhang_ss is None: blast_2_best_hit_overhang_ss = blast_2_best_hit_overhang if blast_2_best_hit_score_edge_ss is None: blast_2_best_hit_score_edge_ss = blast_2_best_hit_score_edge if blast_2_max_target_seqs_ss is None: blast_2_max_target_seqs_ss = blast_2_max_target_seqs run_tblastn_on_assemblies( ss, assemblies, aa_queries_files[ss], tblastn, dir_prj_assmbl_blast_results, blast_2_evalue_ss, blast_2_max_hsps_ss, blast_2_qcov_hsp_perc_ss, blast_2_best_hit_overhang_ss, blast_2_best_hit_score_edge_ss, blast_2_max_target_seqs_ss, THREADS, dir_cache_prj, dir_prj_ips) # Prepare BLAST hits for analysis: find ORFs, translate ------------------ for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: continue min_target_orf_len_ss = sss[ss]['min_target_orf_length'] max_target_orf_len_ss = sss[ss]['max_target_orf_length'] organelle = sss[ss]['organelle'] blast_2_qcov_hsp_perc_ss = sss[ss]['blast_2_qcov_hsp_perc'] if blast_2_qcov_hsp_perc_ss is None: blast_2_qcov_hsp_perc_ss = blast_2_qcov_hsp_perc find_orfs_translate(ss, assemblies, dir_prj_transcripts, seqtk, dir_temp, prepend_assmbl, min_target_orf_len_ss, max_target_orf_len_ss, allow_non_aug, allow_no_strt_cod, allow_no_stop_cod, tax, tax_group, tax_ids_user, blast_2_qcov_hsp_perc_ss, organelle) # GFF3 files from kakapo results JSON files ------------------------------ # print() for ss in sss: if stat(aa_queries_files[ss]).st_size == 0: continue gff_from_json(ss, assemblies, dir_prj_ips, dir_prj_transcripts_combined, prj_name) # Run InterProScan 5 ----------------------------------------------------- if should_run_ipr is True: print() ss_names = tuple(sss.keys()) # Determine the length of printed strings, for better spacing -------- max_title_a_len = 0 max_run_id_len = 0 for a in assemblies: for ss in ss_names: if 'transcripts_aa_orf_fasta_file__' + ss not in a: continue aa_file = a['transcripts_aa_orf_fasta_file__' + ss] if aa_file is None: continue assmbl_name = a['name'] run_id = ss + '_' + assmbl_name max_run_id_len = max(len(run_id), max_run_id_len) seqs = seq_records_to_dict(read_fasta(aa_file, SEQ_TYPE_AA)) # Filter all ORFs except the first one. for seq_def in tuple(seqs.keys()): seq_def_prefix = seq_def.split(' ')[0] if seq_def_prefix.endswith('ORF001'): max_title_a_len = max(len(seq_def_prefix), max_title_a_len) max_title_a_len += 2 max_run_id_len += 2 # -------------------------------------------------------------------- parallel_run_count = min(THREADS, len(ss_names)) def run_inter_pro_scan_parallel(ss): if stat(aa_queries_files[ss]).st_size == 0: return run_inter_pro_scan(ss, assemblies, email, dir_prj_ips, dir_cache_prj, parallel_run_count, max_title_a_len, max_run_id_len) # GFF3 files from kakapo and InterProScan 5 results JSON files gff_from_json(ss, assemblies, dir_prj_ips, dir_prj_transcripts_combined, prj_name) Parallel(n_jobs=parallel_run_count, verbose=0, require='sharedmem')(delayed(run_inter_pro_scan_parallel)(ss) for ss in ss_names) # Download CDS for NCBI protein queries ---------------------------------- print() prot_cds_ncbi_files = OrderedDict() def dnld_cds_for_ncbi_prot_acc_parallel(ss): if stat(aa_queries_files[ss]).st_size == 0: return if ss not in prot_acc_user_filtered: return prot_cds_ncbi_files[ss] = opj( dir_prj_transcripts_combined, prj_name + '_ncbi_query_cds__' + ss + '.fasta') if len(prot_acc_user_filtered[ss]) > 0: dnld_cds_for_ncbi_prot_acc(ss, prot_acc_user_filtered[ss], prot_cds_ncbi_files[ss], tax, dir_cache_prj) ss_names = tuple(sss.keys()) Parallel(n_jobs=2, verbose=0, require='sharedmem')( delayed(dnld_cds_for_ncbi_prot_acc_parallel)(ss) for ss in ss_names) # ------------------------------------------------------------------------ rmtree(dir_temp) # ------------------------------------------------------------------------ rerun = input('\nRepeat ([y]/n)? ').lower().strip() if rerun.startswith('y') or rerun == '': print() return False else: print('\nExiting...') return True
FORCE_DEPS = ARGS.FORCE_DEPS INSTALL_DEPS = ARGS.INSTALL_DEPS DNLD_KRAKEN_DBS = ARGS.DNLD_KRAKEN_DBS PRINT_VERSION = ARGS.PRINT_VERSION PRINT_HELP = ARGS.PRINT_HELP if PRINT_HELP is True: print(SCRIPT_INFO) PARSER.print_help() exit(0) if PRINT_VERSION is True: print(__script_name__ + ' v' + __version__) exit(0) if CLEAN_CONFIG_DIR is True and ope(DIR_CFG): print(CONSRED + 'Removing configuration directory: ' + CONSDFL + DIR_CFG) rmtree(DIR_CFG) exit(0) elif CLEAN_CONFIG_DIR is True: print(CONSRED + 'Configuration directory does not exist. Nothing to do.' + CONSDFL) exit(0) if CLEAN_CONFIG_DIR is False and CONFIG_FILE_PATH is not None: if not ope(CONFIG_FILE_PATH): print(CONSRED + 'Configuration file ' + CONFIG_FILE_PATH + ' does not exist.' + CONSDFL) exit(0) elif INSTALL_DEPS is True or DNLD_KRAKEN_DBS is True: pass
def list_wavs_in_dir(dirname): return glob.glob(opj(ope(dirname), '*.wav'))
def make_dirs(path): path = abspath(expanduser(path)) if not ope(path): makedirs(path) return path
def run_inter_pro_scan(ss, assemblies, email, dir_prj_ips, dir_cache_prj, parallel_run_count, max_title_a_len, max_run_id_len): delay = 0.25 for a in assemblies: if 'transcripts_aa_orf_fasta_file__' + ss not in a: continue aa_file = a['transcripts_aa_orf_fasta_file__' + ss] if aa_file is None: continue assmbl_name = a['name'] json_dump_file_path = opj(dir_prj_ips, assmbl_name + '_ann_ips__' + ss + '.json') if ope(json_dump_file_path): Log.inf('InterProScan results for assembly ' + assmbl_name + ', ' 'search strategy ' + ss + ' have already been downloaded.') continue else: Log.inf('Running InterProScan on translated ' + ss + ' from ' + assmbl_name + '.') seqs = seq_records_to_dict(read_fasta(aa_file, SEQ_TYPE_AA)) # Filter all ORFs except the first one. for seq_def in tuple(seqs.keys()): seq_def_prefix = seq_def.split(' ')[0] if not seq_def_prefix.endswith('ORF001'): del seqs[seq_def] seqs = OrderedDict( sorted(seqs.items(), key=lambda x: x[0].split(' ')[1], reverse=True)) run_id = ss + '_' + assmbl_name _ = opj(dir_cache_prj, 'ips5_cache_done_' + run_id) if ope(_): with open(_, 'rb') as f: jobs = pickle.load(f) else: jobs = job_runner(email=email, dir_cache=dir_cache_prj, seqs=seqs, run_id=run_id, parallel_run_count=parallel_run_count, max_title_a_len=max_title_a_len, max_run_id_len=max_run_id_len) with open(_, 'wb') as f: pickle.dump(jobs, f, protocol=PICKLE_PROTOCOL) Log.inf('Downloading InterProScan results for ' + ss + ' in ' + assmbl_name + '.') all_ips_results = {} # Nicer printing for i, job in enumerate(jobs['finished']): job_id = jobs['finished'][job] titles_ab = split_seq_defn(job) title_a = titles_ab[0] progress = round(((i + 1) / len(jobs['finished'])) * 100) progress_str = '{:3d}'.format(progress) + '%' msg = (' ' * 12 + title_a.ljust(max_title_a_len) + run_id.ljust(max_run_id_len) + progress_str.rjust(4) + ' ' + job_id) Log.msg(msg) sleep(delay) ips_json = result_json(job_id) if ips_json is None: continue # ips_version = ips_json['interproscan-version'] ips_json = ips_json['results'] # These fields are set to 'EMBOSS_001' by default # Delete them del ips_json[0]['xref'] job_no_def = job.split(' ')[0] all_ips_results[job_no_def] = ips_json with open(json_dump_file_path, 'w') as f: json.dump(all_ips_results, f, sort_keys=True, indent=4) # Removes cached jobs file. osremove(_)
def run_spades(se_fastq_files, pe_fastq_files, dir_spades_assemblies, spades, dir_temp, ss, threads, ram): if len(se_fastq_files) > 0 or len(pe_fastq_files) > 0: if spades is None: Log.err('SPAdes is not available. Cannot continue. Exiting.') exit(0) for se in se_fastq_files: dir_results = opj(dir_spades_assemblies, se + '__' + ss) fq_path = se_fastq_files[se]['vsearch_results_path' + '__' + ss] se_fastq_files[se]['spades_assembly' + '__' + ss] = None if ope(dir_results): Log.msg('SPAdes assembly already exists:', se) else: make_dirs(dir_results) Log.msg('Running SPAdes on:', se) run_spades_se(spades, out_dir=dir_results, input_file=fq_path, threads=threads, memory=ram, rna=True) assmbl_path = opj(dir_results, 'transcripts.fasta') if ope(assmbl_path): count = len(read_fasta(assmbl_path, SEQ_TYPE_NT)) tr_str = ' transcripts.' if count == 1: tr_str = ' transcript.' Log.msg('SPAdes produced ' + str(count) + tr_str, False) se_fastq_files[se]['spades_assembly' + '__' + ss] = assmbl_path else: Log.wrn('SPAdes produced no transcripts.', False) for pe in pe_fastq_files: dir_results = opj(dir_spades_assemblies, pe + '__' + ss) fq_paths = pe_fastq_files[pe]['vsearch_results_path' + '__' + ss] pe_fastq_files[pe]['spades_assembly' + '__' + ss] = None if ope(dir_results): Log.msg('SPAdes assembly already exists:', pe) else: make_dirs(dir_results) Log.msg('Running SPAdes on: ' + pe) if osstat(fq_paths[0]).st_size > 0 and \ osstat(fq_paths[1]).st_size > 0: run_spades_pe(spades, out_dir=dir_results, input_files=fq_paths, threads=threads, memory=ram, rna=True) else: _ = opj(dir_temp, 'temp.fasta') combine_text_files(fq_paths, _) run_spades_se(spades, out_dir=dir_results, input_file=_, threads=threads, memory=ram, rna=True) osremove(_) assmbl_path = opj(dir_results, 'transcripts.fasta') if ope(assmbl_path): count = len(read_fasta(assmbl_path, SEQ_TYPE_NT)) tr_str = ' transcripts.' if count == 1: tr_str = ' transcript.' Log.msg('SPAdes produced ' + str(count) + tr_str, False) pe_fastq_files[pe]['spades_assembly' + '__' + ss] = assmbl_path else: Log.wrn('SPAdes produced no transcripts.', False)
def run_tblastn_on_assemblies(ss, assemblies, aa_queries_file, tblastn, dir_prj_assmbl_blast_results, blast_2_evalue, blast_2_max_hsps, blast_2_qcov_hsp_perc, blast_2_best_hit_overhang, blast_2_best_hit_score_edge, blast_2_max_target_seqs, threads, dir_cache_prj, dir_prj_ips): if len(assemblies) > 0: print() Log.inf('Running BLAST on assemblies:', ss) if tblastn is None: Log.err('tblastn is not available. Cannot continue. Exiting.') exit(0) else: Log.wrn('There are no assemblies. Nothing to do, stopping.') exit(0) cache_file = opj(dir_cache_prj, 'blast_2_settings_cache__' + ss) pickled = dict() settings = {'blast_2_evalue': blast_2_evalue, 'blast_2_max_hsps': blast_2_max_hsps, 'blast_2_qcov_hsp_perc': blast_2_qcov_hsp_perc, 'blast_2_best_hit_overhang': blast_2_best_hit_overhang, 'blast_2_best_hit_score_edge': blast_2_best_hit_score_edge, 'blast_2_max_target_seqs': blast_2_max_target_seqs, 'queries': seq_records_to_dict( read_fasta(aa_queries_file, SEQ_TYPE_AA))} Log.msg('evalue:', str(blast_2_evalue)) Log.msg('max_hsps:', str(blast_2_max_hsps)) Log.msg('qcov_hsp_perc:', str(blast_2_qcov_hsp_perc)) Log.msg('best_hit_overhang:', str(blast_2_best_hit_overhang)) Log.msg('best_hit_score_edge:', str(blast_2_best_hit_score_edge)) Log.msg('max_target_seqs:', str(blast_2_max_target_seqs)) print() for a in assemblies: assmbl_src = a['src'] assmbl_name = a['name'] if assmbl_src != 'user_fasta': if assmbl_name.endswith('__' + ss): assmbl_name = assmbl_name.replace('__' + ss, '') else: continue assmbl_blast_db_path = a['blast_db_path'] assmbl_genetic_code = a['gc_id'] ips_json_dump_path = opj(dir_prj_ips, assmbl_name + '_ann_ips__' + ss + '.json') _ = opj(dir_prj_assmbl_blast_results, assmbl_name + '__' + ss + '.tsv') if ope(_) and ope(cache_file): with open(cache_file, 'rb') as f: pickled = pickle.load(f) if ope(_) and pickled == settings: # Log.msg('The provided BLAST settings and query sequences did ' # 'not change since the previous run.') Log.msg('BLAST results already exist:', assmbl_name) else: Log.msg('Running tblastn on: ' + assmbl_name, ss) if ope(ips_json_dump_path): osremove(ips_json_dump_path) run_blast(exec_file=tblastn, task='tblastn', threads=threads, db_path=assmbl_blast_db_path, queries_file=aa_queries_file, out_file=_, evalue=blast_2_evalue, max_hsps=blast_2_max_hsps, qcov_hsp_perc=blast_2_qcov_hsp_perc, best_hit_overhang=blast_2_best_hit_overhang, best_hit_score_edge=blast_2_best_hit_score_edge, max_target_seqs=blast_2_max_target_seqs, db_genetic_code=assmbl_genetic_code, out_cols=BLST_RES_COLS_2) a['blast_hits_aa__' + ss] = parse_blast_results_file(_, BLST_RES_COLS_2) with open(cache_file, 'wb') as f: pickle.dump(settings, f, protocol=PICKLE_PROTOCOL)
def run_bt2_fq(se_fastq_files, pe_fastq_files, dir_fq_filter_data, bowtie2, bowtie2_build, threads, dir_temp, bt2_order, fpatt, taxonomy, dir_cache_refseqs): new_se_fastq_files = dict() new_pe_fastq_files = dict() msg_printed = False # SE for se in se_fastq_files: taxid = se_fastq_files[se]['tax_id'] dbs = _should_run_bt2(taxid, taxonomy, bt2_order, bowtie2, bowtie2_build) in_f = se_fastq_files[se]['trim_path_fq'] in_f_orig = in_f if len(dbs) == 0: se_fastq_files[se]['filter_path_fq'] = in_f continue if msg_printed is False: print() Log.inf('Running Bowtie2.') msg_printed = True for i, db in enumerate(dbs): db_path = dbs[db] dir_fq_bt_data_sample = opj(dir_fq_filter_data, se, db) dir_fq_bt_data_sample_un = opj(dir_fq_filter_data, se) new_se = se + '_' + db out_f = opj(dir_fq_bt_data_sample, new_se + '.fastq') out_f_un = opj(dir_temp, new_se + '_bt2_unaligned' + '.fastq') sam_f = opj(dir_fq_bt_data_sample, new_se + '.sam') new_se_fastq_files[new_se] = deepcopy(se_fastq_files[se]) new_se_fastq_files[new_se]['path'] = None new_se_fastq_files[new_se]['cor_path_fq'] = None new_se_fastq_files[new_se]['trim_path_fq'] = None taxid = new_se_fastq_files[new_se]['tax_id'] gc = new_se_fastq_files[new_se]['gc_id'] if db == MT: gc = taxonomy.mito_genetic_code_for_taxid(taxid) new_se_fastq_files[new_se]['gc_id'] = gc elif db == PT: gc = taxonomy.plastid_genetic_code_for_taxid(taxid) new_se_fastq_files[new_se]['gc_id'] = gc new_se_fastq_files[new_se]['gc_tt'] = TranslationTable(gc) new_se_fastq_files[new_se]['filter_path_fq'] = out_f if ope(dir_fq_bt_data_sample): Log.msg('Bowtie2 filtered FASTQ file already exists:', new_se) in_f = opj(dir_fq_bt_data_sample_un, se + '.fastq') else: Log.msg('SE mode:', new_se) make_dirs(dir_fq_bt_data_sample) db_fasta_path = None bt2_idx_path = None if db_path in (MT, PT): db_fasta_path = dnld_refseqs_for_taxid(taxid, db, taxonomy, dir_cache_refseqs, query='', db='nuccore') bt2_idx_path = splitext(db_fasta_path)[0] else: db_fasta_path = db_path bt2_idx_path = opj(dir_cache_refseqs, splitext(basename(db_fasta_path))[0]) if not ope(bt2_idx_path + '.1.bt2'): build_bt2_index(bowtie2_build, [db_fasta_path], bt2_idx_path, threads) run_bowtie2_se(bowtie2=bowtie2, input_file=in_f, output_file=out_f, output_file_un=out_f_un, sam_output_file=sam_f, index=bt2_idx_path, threads=threads, dir_temp=dir_temp) if i > 0: remove(in_f) in_f = out_f_un out_f_un = opj(dir_fq_bt_data_sample_un, se + '.fastq') se_fastq_files[se]['filter_path_fq'] = out_f_un if in_f != in_f_orig: move(in_f, out_f_un) se_fastq_files.update(new_se_fastq_files) # PE for pe in pe_fastq_files: taxid = pe_fastq_files[pe]['tax_id'] dbs = _should_run_bt2(taxid, taxonomy, bt2_order, bowtie2, bowtie2_build) in_fs = pe_fastq_files[pe]['trim_path_fq'] in_fs_orig = tuple(in_fs) if len(dbs) == 0: pe_fastq_files[pe]['filter_path_fq'] = in_fs continue if msg_printed is False: print() Log.inf('Running Bowtie2.') msg_printed = True for i, db in enumerate(dbs): db_path = dbs[db] dir_fq_bt_data_sample = opj(dir_fq_filter_data, pe, db) dir_fq_bt_data_sample_un = opj(dir_fq_filter_data, pe) new_pe = pe + '_' + db out_fs = [x.replace('@D@', dir_fq_bt_data_sample) for x in fpatt] out_fs = [x.replace('@N@', new_pe) for x in out_fs] out_fs_un = [x.replace('@D@', dir_temp) for x in fpatt] out_fs_un = [ x.replace('@N@', new_pe + '_bt2_unaligned') for x in out_fs_un ] sam_f = opj(dir_fq_bt_data_sample, new_pe + '.sam') new_pe_fastq_files[new_pe] = deepcopy(pe_fastq_files[pe]) new_pe_fastq_files[new_pe]['path'] = None new_pe_fastq_files[new_pe]['cor_path_fq'] = None new_pe_fastq_files[new_pe]['trim_path_fq'] = None taxid = new_pe_fastq_files[new_pe]['tax_id'] gc = new_pe_fastq_files[new_pe]['gc_id'] if db == MT: gc = taxonomy.mito_genetic_code_for_taxid(taxid) new_pe_fastq_files[new_pe]['gc_id'] = gc elif db == PT: gc = taxonomy.plastid_genetic_code_for_taxid(taxid) new_pe_fastq_files[new_pe]['gc_id'] = gc new_pe_fastq_files[new_pe]['gc_tt'] = TranslationTable(gc) new_pe_fastq_files[new_pe]['filter_path_fq'] = out_fs if ope(dir_fq_bt_data_sample): Log.msg('Bowtie2 filtered FASTQ files already exist:', new_pe) in_fs = [ x.replace('@D@', dir_fq_bt_data_sample_un) for x in fpatt ] in_fs = [x.replace('@N@', pe) for x in in_fs] else: Log.msg('PE mode:', new_pe) make_dirs(dir_fq_bt_data_sample) db_fasta_path = None bt2_idx_path = None if db_path in (MT, PT): db_fasta_path = dnld_refseqs_for_taxid(taxid, db, taxonomy, dir_cache_refseqs, query='', db='nuccore') bt2_idx_path = splitext(db_fasta_path)[0] else: db_fasta_path = db_path bt2_idx_path = opj(dir_cache_refseqs, splitext(basename(db_fasta_path))[0]) if not ope(bt2_idx_path + '.1.bt2'): build_bt2_index(bowtie2_build, [db_fasta_path], bt2_idx_path, threads) paired_out_pattern = out_fs[0].replace('_paired_1.fastq', '_paired_%.fastq') paired_out_pattern_un = out_fs_un[0].replace( '_paired_1.fastq', '_paired_%.fastq') run_bowtie2_pe(bowtie2=bowtie2, input_files=in_fs, paired_out_pattern=paired_out_pattern, paired_out_pattern_un=paired_out_pattern_un, unpaired_out_1=out_fs[2], unpaired_out_2=out_fs[3], unpaired_out_1_un=out_fs_un[2], unpaired_out_2_un=out_fs_un[3], sam_output_file=sam_f, index=bt2_idx_path, threads=threads, dir_temp=dir_temp) if i > 0: remove(in_fs[0]) remove(in_fs[1]) remove(in_fs[2]) remove(in_fs[3]) in_fs = out_fs_un out_fs_un = [x.replace('@D@', dir_fq_bt_data_sample_un) for x in fpatt] out_fs_un = [x.replace('@N@', pe) for x in out_fs_un] pe_fastq_files[pe]['filter_path_fq'] = out_fs_un if tuple(in_fs) != in_fs_orig: move(in_fs[0], out_fs_un[0]) move(in_fs[1], out_fs_un[1]) move(in_fs[2], out_fs_un[2]) move(in_fs[3], out_fs_un[3]) pe_fastq_files.update(new_pe_fastq_files)