''' import numpy as np #import ctypes from matplotlib import pyplot as plt from scipy import optimize import os import oscaar ## Run parameters: plotFit = True ## Plot light curve fit animatePB = False ## Plot each prayer-bead iteration dataBank = oscaar.load( os.path.join(os.path.dirname(__file__), '../examples/sampleOutput/oscaarDataBase.pkl')) t = times = np.require(dataBank.getTimes(), dtype=np.float64) F = dataBank.lightCurve sigmas = dataBank.lightCurveError Npoints = len(t) n = Npoints ## np.require() will force the ndarrays to the right dtype as assigned in the `argtypes` list. t = np.require(t, np.float64) #F = np.empty_like(t,dtype=np.float32) #occultquad(t, p, ap, P, i, gamma1, gamma2, e,longPericenter, t0, n, F) ## Simulate fake data # Enter Initial Parameters to vary initParamNames = ['R_p/R_s', 'a/R_s', 'inc', 't_0'] modelParams = np.loadtxt( os.path.join(os.path.dirname(__file__), 'modelParams.txt'))
prayer-bead method. ''' import numpy as np #import ctypes from matplotlib import pyplot as plt from scipy import optimize import os import oscaar ## Run parameters: plotFit = True ## Plot light curve fit animatePB = False ## Plot each prayer-bead iteration dataBank = oscaar.load(os.path.join(os.path.dirname(__file__),'../examples/sampleOutput/oscaarDataBase.pkl')) t = times = np.require(dataBank.getTimes(),dtype=np.float64) F = dataBank.lightCurve sigmas = dataBank.lightCurveError Npoints = len(t) n = Npoints ## np.require() will force the ndarrays to the right dtype as assigned in the `argtypes` list. t = np.require(t,np.float64) #F = np.empty_like(t,dtype=np.float32) #occultquad(t, p, ap, P, i, gamma1, gamma2, e,longPericenter, t0, n, F) ## Simulate fake data # Enter Initial Parameters to vary initParamNames = ['R_p/R_s','a/R_s','inc','t_0'] modelParams = np.loadtxt(os.path.join(os.path.dirname(__file__),'modelParams.txt')) print modelParams [p,ap,P,i,gamma1,gamma2,e,longPericenter,t0] = modelParams
import oscaar from oscaar import astrometry from oscaar import photometry import pyfits import numpy as np from matplotlib import pyplot as plt from time import time import os import matplotlib print matplotlib.__version__ #plt.ion() import datetime outputPath = 'outputs' + os.sep + 'oscaarDataBase.pkl' data = oscaar.load(outputPath) fig = plt.figure(num=None, figsize=(10, 8), facecolor='w', edgecolor='k') fig.canvas.set_window_title('oscaar2.0') print 'plotting' times = data.getTimes() meanComparisonStar, meanComparisonStarError = data.calcMeanComparison( ccdGain=1.0) lightCurve, lightCurveError = data.computeLightCurve(meanComparisonStar, meanComparisonStarError) binnedTime, binnedFlux, binnedStd = oscaar.medianBin(times, lightCurve, 10) photonNoise = data.getPhotonNoise() print times.shape, lightCurve.shape ax1 = fig.add_subplot(111)
import oscaar from oscaar import astrometry from oscaar import photometry import pyfits import numpy as np from matplotlib import pyplot as plt from time import time import os import matplotlib print matplotlib.__version__ # plt.ion() import datetime outputPath = "outputs" + os.sep + "oscaarDataBase.pkl" data = oscaar.load(outputPath) fig = plt.figure(num=None, figsize=(10, 8), facecolor="w", edgecolor="k") fig.canvas.set_window_title("oscaar2.0") print "plotting" times = data.getTimes() meanComparisonStar, meanComparisonStarError = data.calcMeanComparison(ccdGain=1.0) lightCurve, lightCurveError = data.computeLightCurve(meanComparisonStar, meanComparisonStarError) binnedTime, binnedFlux, binnedStd = oscaar.medianBin(times, lightCurve, 10) photonNoise = data.getPhotonNoise() print times.shape, lightCurve.shape ax1 = fig.add_subplot(111)
uncertainties in the extracted system parameters with the prayer-bead method. ''' import numpy as np #import ctypes from matplotlib import pyplot as plt from scipy import optimize import os import oscaar ## Run parameters: plotFit = True ## Plot light curve fit animatePB = False ## Plot each prayer-bead iteration dataBank = oscaar.load(os.path.join(os.path.dirname(__file__),os.path.abspath("../../../outputs/oscaarDataBase.pkl"))) t = times = np.require(dataBank.getTimes(),dtype=np.float64) F = dataBank.lightCurve sigmas = dataBank.lightCurveError Npoints = len(t) n = Npoints ## np.require() will force the ndarrays to the right dtype as assigned in the `argtypes` list. t = np.require(t,np.float64) #F = np.empty_like(t,dtype=np.float32) #occultquad(t, p, ap, P, i, gamma1, gamma2, e,longPericenter, t0, n, F) ## Simulate fake data # Enter Initial Parameters to vary initParamNames = ['R_p/R_s','a/R_s','inc','t_0'] modelParams = np.loadtxt(os.path.join(os.path.dirname(__file__),'modelParams.txt')) print modelParams [p,ap,P,i,gamma1,gamma2,e,longPericenter,t0] = modelParams
import numpy as np from matplotlib import pyplot as plt ## Import oscaar directory using relative paths import os, sys lib_path = os.path.abspath('../../Code/') sys.path.append(lib_path) import oscaar sampleData = oscaar.load('oscaarDataBase.pkl') ## Set up the figure fig = plt.figure(figsize=(10, 10)) axis1 = fig.add_subplot(221) axis2 = fig.add_subplot(222) axis3 = fig.add_subplot(223) axis4 = fig.add_subplot(224) ## Plot light curve axis1.set_title('Transit light curve') axis1.set_xlabel('Time (JD)') axis1.set_ylabel('Relative Flux') axis1.plot(sampleData.times, sampleData.lightCurve, '.') ## Plot Light Curve axis1.axvline(ymin=0, ymax=1, x=sampleData.ingress, linestyle=":") axis1.axvline(ymin=0, ymax=1, x=sampleData.egress, linestyle=":") ## Trace (x,y) position of the target star starDictionary = sampleData.getDict( ) ## The position data is stored in a dictionary starKeys = sampleData.keys ## There are keys for each star in the dictionary targetX = starDictionary[starKeys[0]][
prayer-bead method. ''' import numpy as np #import ctypes from matplotlib import pyplot as plt from scipy import optimize import os import oscaar ## Run parameters: plotFit = True ## Plot light curve fit animatePB = True ## Plot each prayer-bead iteration dataBank = oscaar.load( os.path.join(os.path.dirname(__file__), os.path.abspath("../../../outputs/oscaarDataBase.pkl"))) t = times = np.require(dataBank.getTimes(), dtype=np.float64) F = dataBank.lightCurve sigmas = dataBank.lightCurveError Npoints = len(t) n = Npoints ## np.require() will force the ndarrays to the right dtype as assigned in the `argtypes` list. t = np.require(t, np.float64) #F = np.empty_like(t,dtype=np.float32) #occultquad(t, p, ap, P, i, gamma1, gamma2, e,longPericenter, t0, n, F) ## Simulate fake data # Enter Initial Parameters to vary initParamNames = ['R_p/R_s', 'a/R_s', 'inc', 't_0'] modelParams = np.loadtxt( os.path.join(os.path.dirname(__file__), 'modelParams.txt'))
import numpy as np from matplotlib import pyplot as plt import oscaar sampleData = oscaar.load('sampleOutput/oscaarDataBase.pkl') ## Set up the figure fig = plt.figure(figsize=(10,10)) axis1 = fig.add_subplot(221) axis2 = fig.add_subplot(222) axis3 = fig.add_subplot(223) axis4 = fig.add_subplot(224) ## Plot light curve axis1.set_title('Transit light curve') axis1.set_xlabel('Time (JD)') axis1.set_ylabel('Relative Flux') axis1.plot(sampleData.times,sampleData.lightCurve,'.') ## Plot Light Curve axis1.axvline(ymin=0,ymax=1,x=sampleData.ingress,linestyle=":") axis1.axvline(ymin=0,ymax=1,x=sampleData.egress,linestyle=":") ## Trace (x,y) position of the target star starDictionary = sampleData.getDict() ## The position data is stored in a dictionary starKeys = sampleData.keys ## There are keys for each star in the dictionary targetX = starDictionary[starKeys[0]]['x-pos'] ## Access the position data with this dictionary look-up targetY = starDictionary[starKeys[0]]['y-pos'] axis2.plot(targetX,targetY) axis2.set_title('Target centroid pixel position (trace)') axis2.set_xlabel('X') axis2.set_ylabel('Y')
import numpy as np from matplotlib import pyplot as plt ## Import oscaar directory using relative paths import os, sys lib_path = os.path.abspath('../../Code/') sys.path.append(lib_path) import oscaar sampleData = oscaar.load('oscaarDataBase.pkl') ## Set up the figure fig = plt.figure(figsize=(10,10)) axis1 = fig.add_subplot(221) axis2 = fig.add_subplot(222) axis3 = fig.add_subplot(223) axis4 = fig.add_subplot(224) ## Plot light curve axis1.set_title('Transit light curve') axis1.set_xlabel('Time (JD)') axis1.set_ylabel('Relative Flux') axis1.plot(sampleData.times,sampleData.lightCurve,'.') ## Plot Light Curve axis1.axvline(ymin=0,ymax=1,x=sampleData.ingress,linestyle=":") axis1.axvline(ymin=0,ymax=1,x=sampleData.egress,linestyle=":") ## Trace (x,y) position of the target star starDictionary = sampleData.getDict() ## The position data is stored in a dictionary starKeys = sampleData.keys ## There are keys for each star in the dictionary targetX = starDictionary[starKeys[0]]['x-pos'] ## Access the position data with this dictionary look-up targetY = starDictionary[starKeys[0]]['y-pos']