示例#1
0
def run_grid_interpolation(tfunc, dct, N, low, high, scale=1.e-8):

    Abscissas = Ostap.Math.Interpolation.Abscissas

    ##  uniform abscissas
    i0 = interpolate(dct)

    ## bernstein interpolant
    i1 = interpolate_bernstein(dct, None, low, high)

    xx = []
    for i in range(100000):
        xx.append(random.uniform(low, high))
    xx.sort()

    c0 = SE()
    c1 = SE()

    for x in xx:

        f = tfunc(x)

        f0 = i0(x)
        f1 = i1(x)

        d0 = f0 - f
        d1 = f1 - f

        c0 += abs(d0) / scale
        c1 += abs(d1) / scale

    logger.info('Grid      precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' %
                (scale, c0.mean().value(), c0.rms(), c0.max()))
    logger.info('Bernstein precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' %
                (scale, c1.mean().value(), c1.rms(), c1.max()))
def run_func_interpolation (  fun , N , low , high , scale = 1.e-8 ) :
    
    Abscissas =  Ostap.Math.Interpolation.Abscissas

    ##  uniform abscissas 
    i0 = interpolate ( fun , Abscissas ( N , low , high , 0 ) )

    ## Chebyshev abscissas 
    i1 = interpolate ( fun , Abscissas ( N , low , high , 1 ) )

    ## lobatto abscissas 
    i2 = interpolate ( fun , Abscissas ( N , low , high , 2 ) )

    ## random abscissas 
    i3 = interpolate ( fun , [ random.uniform ( low , high ) for i in   range (N ) ] )

    ## bernstein interpolant 
    i4 = interpolate_bernstein ( fun ,  Abscissas ( N , low , high , 2 ) , low , high )
    
    xx = []
    for i in range ( 100000 ) : xx.append ( random.uniform ( low , high ) ) 
    xx.sort()

    c0 = SE()
    c1 = SE()
    c2 = SE()
    c3 = SE()
    c4 = SE()
    
    for x in xx :
        
        f  = fun      ( x ) 
        f0 = i0       ( x ) 
        f1 = i1       ( x ) 
        f2 = i2       ( x ) 
        f3 = i3       ( x ) 
        f4 = i4       ( x ) 

        d0 = f0 - f 
        d1 = f1 - f
        d2 = f2 - f 
        d3 = f3 - f 
        d4 = f4 - f 
        
        c0 += abs ( d0 ) / scale  
        c1 += abs ( d1 ) / scale 
        c2 += abs ( d2 ) / scale
        c3 += abs ( d3 ) / scale
        c4 += abs ( d4 ) / scale
        
    logger.info ( 'Uniform   precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c0.mean () . value () , c0.rms () , c0.max () ) )
    logger.info ( 'Chebyshev precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c1.mean () . value () , c1.rms () , c1.max () ) )
    logger.info ( 'Lobatto   precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c2.mean () . value () , c2.rms () , c2.max () ) )
    logger.info ( 'Random    precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c3.mean () . value () , c3.rms () , c3.max () ) )
    logger.info ( 'Bernstein precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c4.mean () . value () , c4.rms () , c4.max () ) )
示例#3
0
def test_parameterize_3D():

    with ROOT.TFile.Open(data_file, 'READ') as f:

        tree = f.S

        lx = Ostap.Math.LegendreSum3(8, 8, 8, -2, 2, -4, 4, -4, 6)
        ly = Ostap.Math.LegendreSum3(8, 8, 8, -2, 2, -4, 4, -4, 6)
        lz = Ostap.Math.LegendreSum3(8, 8, 8, -2, 2, -2, 2, -4, 6)
        lu = Ostap.Math.LegendreSum3(8, 8, 8, -2, 2, -2, 2, -4, 4)

        lx.parameterize(tree, 'y', 'z', 'u', cuts)
        ly.parameterize(tree, 'x', 'z', 'u', cuts)
        lz.parameterize(tree, 'x', 'y', 'u', cuts)
        lu.parameterize(tree, 'x', 'y', 'z', cuts)

        lxy = lz.integralZ()
        lzu = lx.integralX()
        lxu = ly.integralY()

        hxy = ROOT.TH2F(hID(), '', 20, -2, 2, 20, -2, 2)
        hzu = ROOT.TH2F(hID(), '', 20, -4, 4, 20, -4, 6)
        hxu = ROOT.TH2F(hID(), '', 20, -2, 2, 20, -4, 6)

        tree.project(hxy, 'y:x', cuts)
        tree.project(hzu, 'u:z', cuts)
        tree.project(hxu, 'u:x', cuts)

        lxy *= (4.0 / 20) * (4.0 / 20)
        lzu *= (8.0 / 20) * (10.0 / 20)
        lxu *= (4.0 / 20) * (10.0 / 20)

        d1 = SE()
        d2 = SE()
        d3 = SE()

        for i in range(100):

            x = random.uniform(-2, 2)
            y = random.uniform(-2, 2)
            z = random.uniform(-4, 4)
            u = random.uniform(-4, 6)

            d1 += (lxy(x, y) - hxy(x, y)) / max(lxy(x, y), hxy(x, y))
            d2 += (lzu(z, u) - hzu(z, u)) / max(lzu(z, u), hzu(z, u))
            d3 += (lxu(x, u) - hxu(x, u)) / max(lxu(x, u), hxu(x, u))

        logger.info('3D-(xy)-DIFFERENCES are %s ' % d1)
        logger.info('3D-(zu)-DIFFERENCES are %s ' % d2)
        logger.info('3D-(xu)-DIFFERENCES are %s ' % d3)
示例#4
0
def test_interpolation():
    """Test spline interpolation
    """

    if 62006 <= root_version_int:
        logger.warning("Test_interpolation segfaults for ROOT %s" %
                       root_version_int)
        return

    from math import sin, pi, sqrt

    fun = lambda x: sin(2 * pi * x)

    bs = ostap.math.bspline.interpolate(
        fun, None, [0] + [random.uniform(0.01, 0.99) for i in range(30)] + [1],
        2)

    from ostap.stats.counters import SE
    s = SE()
    for i in range(10000):
        x = random.uniform(0, 1)
        vf = fun(x)
        vb = bs(x)
        s += vf - vb

    logger.info('Interpolation quality %s' % s)

    functions.add(bs)

    with wait(3), use_canvas('test_interpolation'):
        f1_draw(fun, xmin=0, xmax=1, linecolor=2)
        bs.draw('same', linecolor=4)
示例#5
0
def test_pickle():
    logger = getLogger('test_pickle')
    logger.info('Check pickling/unpickling')

    import pickle
    rows = [('#', 'before', 'after', 'mean', 'rms')]
    for i, f in enumerate(functions, start=1):

        fs = pickle.loads(pickle.dumps(f))
        s = SE()
        for j in range(1000):
            x = random.uniform(f.xmin(), f.xmax())
            s += abs(fs(x) - f(x))
        row = '%d' % i, f.__class__.__name__, fs.__class__.__name__, '%-+.4g' % s.mean(
        ), '%-+.4g' % s.rms()
        rows.append(row)

    import ostap.logger.table as T
    title = "Compare before/after eserialisation"
    table = T.table(rows, title=title, prefix='# ', alignment='rllll')
    logger.info('%s\n%s' % (title, table))
示例#6
0
def test_pickle():
    logger = getLogger('test_pickle')
    logger.info('Check pickling/unpickling')

    bad = False
    import pickle
    rows = [('#', 'before', 'after', 'mean', 'rms')]
    for i, f in enumerate(progress_bar(functions), start=1):

        n, ff = f
        fs = pickle.loads(pickle.dumps(ff))
        s = SE()
        for j in range(1000):
            x = random.uniform(ff.xmin(), ff.xmax())
            s += abs(fs(x) - ff(x))

        mean = '%-+.6g' % s.mean()
        rms = '%-+.6g' % s.rms()

        if 1.e-7 < s.mean(): mean = attention(mean)
        if 1.e-7 < s.rms(): rms = attention(rms)

        row = '%d' % i, ff.__class__.__name__, fs.__class__.__name__, mean, rms
        ## row = '%d' % i , '%s' % ff  , '%s' % fs , '%-+.5g' % s.mean() , '%-+.5g' % s.rms()

        rows.append(row)

    import ostap.logger.table as T
    title = "Compare before/after serialisation"
    table = T.table(rows, title=title, prefix='# ', alignment='rllll')
    if bad: logger.warning('%s\n%s' % (title, table))
    else: logger.info('%s\n%s' % (title, table))
示例#7
0
def test_approximation():
    """Test spline approximation
    """
    from math import sin, pi, sqrt

    fun = lambda x: sin(2 * pi * x)
    bs = ostap.math.bspline.approximate(
        fun, [0] + [random.uniform(0.01, 0.99) for i in range(50)] + [1], 2)

    from ostap.stats.counters import SE
    s = SE()
    for i in range(10000):
        x = random.uniform(0, 1)
        vf = fun(x)
        vb = bs(x)
        s += vf - vb

    logger.info('Approximation quality %s' % s)

    functions.add(bs)

    with wait(3), use_canvas('test_approximation'):
        f1_draw(fun, xmin=0, xmax=1, linecolor=2)
        bs.draw('same', linecolor=4)
示例#8
0
def test_interpolation():
    """Test bernstein interpolation
    """

    logger = getLogger("test_interpolation")

    from math import sin, pi, sqrt

    fun = lambda x: sin(2 * pi * x)

    bs = ostap.math.bernstein.interpolate(
        fun, [0] + [random.uniform(0.01, 0.99) for i in range(25)] + [1], 0, 1)

    from ostap.stats.counters import SE
    s = SE()
    for i in range(10000):
        x = random.uniform(0, 1)
        vf = fun(x)
        vb = bs(x)
        s += vf - vb

    logger.info('Interpolation quality %s' % s)

    functions.add(bs)
示例#9
0
def test_models():

    xmin = 0
    xmax = 2
    ymin = xmin
    ymax = xmax
    zmin = xmin
    zmax = xmax

    funcs = [
        Ostap.Math.Bernstein3D(2, 2, 2, xmin, xmax, ymin, ymax, zmin, zmax),
        Ostap.Math.Bernstein3DSym(2, xmin, xmax),
        Ostap.Math.Bernstein3DMix(2, 2, xmin, xmax, zmin, zmax),
        Ostap.Math.Positive3D(2, 2, 2, xmin, xmax, ymin, ymax, zmin, zmax),
        Ostap.Math.Positive3DSym(2, xmin, xmax),
        Ostap.Math.Positive3DMix(2, 2, xmin, xmax, zmin, zmax),
    ]

    cnt1 = SE()
    cnt2 = SE()
    cnt3 = SE()
    cnt4 = SE()
    cnt5 = SE()
    cnt6 = SE()
    cnt7 = SE()

    for f in funcs:
        ## print f.xmin() , f.xmax() , f.ymin() , f.ymax(), type(f)
        for i in range(f.npars()):
            f.setPar(i, random.uniform(1, 5))

    for i in range(0, 100):

        if 0 == i:
            x1, x2, y1, y2, z1, z2 = xmin, xmax, ymin, ymax, zmin, zmax
        else:
            x1 = random.uniform(xmin, xmax / 2)
            x2 = random.uniform(x1, xmax)
            y1 = random.uniform(ymin, ymax / 2)
            y2 = random.uniform(y1, ymax)
            z1 = random.uniform(zmin, zmax / 2)
            z2 = random.uniform(z1, zmax)

        for f in funcs:

            i1 = f.integral(x1, x2, y1, y2, z1, z2)
            i2 = integral3(f, x1, x2, y1, y2, z1, z2)

            r1 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r1
            ) < 1.e-5, 'I3:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f,%.2f,%.2f) %s' % (
                r1, x1, x2, y1, y2, z1, z2, type(f))
            cnt1 += r1

            xm = 0.5 * (x1 + x2)
            ym = 0.5 * (y1 + y2)
            zm = 0.5 * (z1 + z2)

            i1 = f.integrateX(ym, zm, x1, x2)
            IX = Integrate3D_X(f, x1, x2)
            i2 = IX(ym, zm)

            r2 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r2
            ) < 1.e-5, 'IX:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f) %s' % (
                r2, x1, x2, ym, zm, type(f))
            cnt2 += r2

            i1 = f.integrateY(xm, zm, y1, y2)
            IY = Integrate3D_Y(f, y1, y2)
            i2 = IY(xm, zm)

            r3 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r3
            ) < 1.e-5, 'IY:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f) %s' % (
                r2, xm, y1, y2, zm, type(f))
            cnt3 += r3

            i1 = f.integrateZ(xm, ym, z1, z2)
            IZ = Integrate3D_Z(f, z1, z2)
            i2 = IZ(xm, ym)

            r4 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r4
            ) < 1.e-5, 'IY:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f) %s' % (
                r2, xm, ym, z1, z2, type(f))
            cnt4 += r4

            i1 = f.integrateXY(zm, x1, x2, y1, y2)
            I5 = Integrate3D_XY(f, x1, x2, y1, y2)
            i2 = I5(zm)

            r5 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r5
            ) < 1.e-5, 'I5:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f,%.2f) %s' % (
                r2, x1, x2, y1, y2, zm, type(f))
            cnt5 += r5

            i1 = f.integrateXZ(ym, x1, x2, z1, z2)
            I6 = Integrate3D_XZ(f, x1, x2, z1, z2)
            i2 = I6(ym)

            r6 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r6
            ) < 1.e-5, 'I6:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f,%.2f) %s' % (
                r2, x1, x2, ym, z1, z2, type(f))
            cnt6 += r6

            i1 = f.integrateYZ(xm, y1, y2, z1, z2)
            I7 = Integrate3D_YZ(f, y1, y2, z1, z2)
            i2 = I7(xm)

            r7 = (i1 - i2) / (abs(i1) + abs(i2))
            assert abs(
                r7
            ) < 1.e-5, 'I7:ERROR: difference is too large: %s (%.2f,%.2f,%.2f,%.2f,%.2f) %s' % (
                r2, xm, y1, y2, z1, z2, type(f))
            cnt7 += r7

    print 'COUNTER(I3):', cnt1
    print 'COUNTER(IX):', cnt2
    print 'COUNTER(IY):', cnt3
    print 'COUNTER(IZ):', cnt4
    print 'COUNTER(I5):', cnt5
    print 'COUNTER(I6):', cnt6
    print 'COUNTER(I7):', cnt7
示例#10
0
def test_models():

    xmin = 0
    xmax = 2
    ymin = xmin
    ymax = xmax

    psx = Ostap.Math.PhaseSpaceNL(xmin + 0.00001 * (xmax - xmin),
                                  xmax - 0.00001 * (xmax - xmin), 3, 7)
    psy = Ostap.Math.PhaseSpaceNL(ymin + 0.00001 * (ymax - ymin),
                                  ymax - 0.00001 * (ymax - ymin), 3, 7)

    funcs = [
        Ostap.Math.Bernstein2D(2, 2, xmin, xmax, ymin, ymax),
        Ostap.Math.Bernstein2DSym(2, xmin, xmax),
        Ostap.Math.Positive2D(2, 2, xmin, xmax, ymin, ymax),
        Ostap.Math.Positive2DSym(2, xmin, xmax),
        Ostap.Math.PS2DPol(psx, psy, 2, 2, xmin, xmax, ymin, ymax),
        Ostap.Math.PS2DPolSym(psx, 2, xmin, xmax),
        Ostap.Math.ExpoPS2DPol(psx, xmin, xmax, 2, 2, ymin, ymax),
        Ostap.Math.Expo2DPol(xmin, xmax, ymin, ymax, 2, 2),
        Ostap.Math.Expo2DPolSym(xmin, xmax, 2),
    ]

    cnt1 = SE()
    cnt2 = SE()
    cnt3 = SE()
    for f in funcs:
        for i in range(f.npars()):
            f.setPar(i, random.uniform(1, 5))
            if hasattr(f, 'setTau'): f.setTau(random.uniform(-2, 2))
            if hasattr(f, 'setTauX'): f.setTauX(random.uniform(-2, 2))
            if hasattr(f, 'setTauY'): f.setTauY(random.uniform(-2, 2))

    for i in range(0, 100):

        if 0 == i:

            x1, x2, y1, y2 = xmin, xmax, ymin, ymax

        else:

            x1 = random.uniform(xmin, xmax / 2)
            x2 = random.uniform(x1, xmax)
            y1 = random.uniform(ymin, ymax / 2)
            y2 = random.uniform(y1, ymax)

        for f in funcs:

            i1 = f.integral(x1, x2, y1, y2)
            i2 = integral2(f, x1, x2, y1, y2)

            r1 = (i1 - i2) / (abs(i1) + abs(i2))
            if 1.e-5 < abs(r1):
                logger.error(
                    'I2:ERROR: difference is too large: %.6g (%.4g,%.4g,%.4g,%.4g) %s'
                    % (r1, x1, x2, y1, y2, type(f)))
            cnt1 += r1

            ym = 0.5 * (y1 + y2)
            i1 = f.integrateX(ym, x1, x2)
            IX = Integrate2D_X(f, x1, x2)
            i2 = IX(ym)

            r2 = (i1 - i2) / (abs(i1) + abs(i2))
            if 1.e-5 < abs(r2):
                logger.error(
                    'IX:ERROR: difference is too large: %.6g (%.4g,%.4g,%.4g,%.4g) %s'
                    % (r2, x1, x2, y1, y2, type(f)))
            cnt2 += r2

            xm = 0.5 * (x1 + x2)

            i1 = f.integrateY(xm, y1, y2)
            IY = Integrate2D_Y(f, y1, y2)
            i2 = IY(xm)

            r3 = (i1 - i2) / (abs(i1) + abs(i2))
            if 1.e-5 < abs(r3):
                logger.error(
                    'IY:ERROR: difference is too large: %.6g (%.4g,%.4g,%.4g,%.4g) %s'
                    % (r3, x1, x2, y1, y2, type(f)))
            cnt3 += r3

    logger.info('Counter(I2) %s' % cnt1)
    logger.info('Counter(IX) %s' % cnt2)
    logger.info('Counter(IY) %s' % cnt3)
def run_grid_interpolation ( tfunc , dct , N , low , high , scale = 1.e-8 ) :
    
    Abscissas =  Ostap.Math.Interpolation.Abscissas
        
    data = points ( dct )

    ##  uniform abscissas 
    i0 = interpolate           ( data )
    
    ## bernstein interpolant 
    i1 = interpolate_bernstein ( data , None , low , high )

    ## neville interpolant
    i2 = Ostap.Math.Neville    ( data )

    ## largange interpolant 
    i3 = Ostap.Math.Lagrange   ( data )

    ## newton interpolant 
    i4 = Ostap.Math.Newton     ( data )

    ## bspline interpolant
    degree = 3
    ## bs = Ostap.Math.BSpline   ( low  , high ,  len ( data ) - 1 - degree , degree  )
    i5 = interpolate_bspline  ( data , None , degree ) 
        
    xx = []
    for i in range ( 100000 ) : xx.append ( random.uniform ( low , high ) ) 
    xx.sort()

    c0 = SE ()
    c1 = SE ()
    c2 = SE ()
    c3 = SE ()
    c4 = SE ()
    c5 = SE ()
    
    for x in xx :

        f  = tfunc    ( x )
        
        f0 = i0       ( x ) 
        f1 = i1       ( x ) 
        f2 = i2       ( x )
        f3 = i3       ( x )
        f4 = i4       ( x )
        f5 = i5       ( x )
        
        d0 = f0 - f 
        d1 = f1 - f
        d2 = f2 - f
        d3 = f3 - f
        d4 = f4 - f
        d5 = f5 - f
        
        c0 += abs ( d0 ) / scale  
        c1 += abs ( d1 ) / scale 
        c2 += abs ( d2 ) / scale 
        c3 += abs ( d3 ) / scale 
        c4 += abs ( d4 ) / scale 
        c5 += abs ( d5 ) / scale 
        
    logger.info ( 'Grid      precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c0.mean () . value () , c0.rms () , c0.max () ) )
    logger.info ( 'Bernstein precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c1.mean () . value () , c1.rms () , c1.max () ) )
    logger.info ( 'Neville   precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c2.mean () . value () , c2.rms () , c2.max () ) )
    logger.info ( 'Lagrange  precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c3.mean () . value () , c3.rms () , c3.max () ) )
    logger.info ( 'Newton    precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c4.mean () . value () , c4.rms () , c4.max () ) )
    logger.info ( 'bSpline   precision: mean/max[%s] = %9.2f +- %-09.1f/%-9.1f' % ( scale , c5.mean () . value () , c5.rms () , c5.max () ) )

    import time
    i5.draw()
    time.sleep(5)
示例#12
0
def test_parameterize_1D():

    with ROOT.TFile.Open(data_file, 'READ') as f:

        tree = f.S

        lx = Ostap.Math.LegendreSum(4, -2, 2)
        ly = Ostap.Math.LegendreSum(4, -2, 2)
        lz = Ostap.Math.LegendreSum(4, -4, 4)
        lu = Ostap.Math.LegendreSum(4, -4, 6)

        lx.parameterize(tree, 'x', cuts)
        ly.parameterize(tree, 'y', cuts)
        lz.parameterize(tree, 'z', cuts)
        lu.parameterize(tree, 'u', cuts)

        hx = ROOT.TH1D(hID(), '', 100, -2, 2)
        hy = ROOT.TH1D(hID(), '', 100, -2, 2)
        hz = ROOT.TH1D(hID(), '', 100, -4, 4)
        hu = ROOT.TH1D(hID(), '', 100, -4, 6)

        tree.project(hx, 'x', cuts)
        tree.project(hy, 'y', cuts)
        tree.project(hz, 'z', cuts)
        tree.project(hu, 'u', cuts)

        hx.SetMinimum(0)
        hx.draw()
        lx *= 0.04  ## bin-width
        lx.draw('same', linecolor=2)

        hy.SetMinimum(0)
        hy.draw()
        ly *= 0.04  ## bin-width
        ly.draw('same', linecolor=2)

        hz.SetMinimum(0)
        hz.draw()
        lz *= 0.08  ## bin-width
        lz.draw('same', linecolor=2)

        hu.SetMinimum(0)
        hu.draw()
        lu *= 0.10  ## bin-width
        lu.draw('same', linecolor=2)

        d1 = SE()
        d2 = SE()
        d3 = SE()
        d4 = SE()

        for i in range(1000):

            x = random.uniform(-2, 2)
            y = random.uniform(-2, 2)
            z = random.uniform(-4, 4)
            u = random.uniform(-4, 6)

            d1 += (hx(x) - lx(x)) / max(hx(x), lx(x))
            d2 += (hy(y) - ly(y)) / max(hy(y), ly(y))
            d3 += (hz(z) - lz(z)) / max(hz(z), lz(z))
            d4 += (hu(u) - lu(u)) / max(hu(u), lu(u))

        logger.info('1D-(x)-DIFFERENCES are %s ' % d1)
        logger.info('1D-(y)-DIFFERENCES are %s ' % d2)
        logger.info('1D-(z)-DIFFERENCES are %s ' % d3)
        logger.info('1D-(u)-DIFFERENCES are %s ' % d4)