示例#1
0
def test_laplace():
    logger.info('Test Asymmetric Laplace shape')
    model = Models.Fit1D(
        signal=Models.AsymmetricLaplace_pdf(name='AL',
                                            xvar=mass,
                                            mean=signal_gauss.mean,
                                            slope=signal_gauss.sigma),
        background=None,
        S=S,
        B=B)

    signal = model.signal
    signal.slope.release()
    signal.mean.fix()

    model.S.setVal(5000)
    model.B.setVal(500)

    with rooSilent():
        result, frame = model.fitTo(dataset0)
        result, frame = model.fitTo(dataset0)
        model.draw(dataset0)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))

    logger.info("asymmetric Laplace function\n%s" % result.table(prefix="# "))

    models.add(model)
示例#2
0
def test_laplace(): 

    logger.info ('Test Asymmetric Laplace shape' )
    laplace = Models.AsymmetricLaplace_pdf ( name  = 'AL', 
                                             xvar  = x   ,
                                             mean  = 5   , 
                                             slope = 1   )
    
    from ostap.fitting.convolution import  Convolution_pdf

    ## constant resolution  
    laplace_1 = Convolution_pdf ( name = 'L1' , pdf = laplace, resolution = 0.75 )

    ## resolution PDF
    from ostap.fitting.resolution import ResoApo2
    rAp = ResoApo2 ( 'A' , x , 0.75  )
    
    ## resolution as PDF 
    laplace_2 = Convolution_pdf ( name = 'L2' , pdf = laplace, resolution = rAp )

    laplace.draw( silent = True )

    laplace_1.draw( silent = True )

    laplace_2.draw()

    models.add ( laplace  )
    models.add ( laplace_1 )
    models.add ( laplace_2 )
示例#3
0
def test_laplace():
    logger.info('Test Asymmetric Laplace shape')
    model = Models.Fit1D(
        signal=Models.AsymmetricLaplace_pdf(name='AL',
                                            xvar=mass,
                                            mean=signal_gauss.mean,
                                            slope=signal_gauss.sigma),
        background=None)

    signal = model.signal
    signal.slope.release()
    signal.mean.fix()

    model.S.setVal(5000)
    model.B.setVal(500)

    with rooSilent():
        result, frame = model.fitTo(dataset0)
        result, frame = model.fitTo(dataset0)

    if 0 != result.status() or 3 != result.covQual():
        logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' %
                       (result.status(), result.covQual()))
        print result
    else:
        logger.info('Signal & Background are: %-28s & %-28s ' %
                    (result('S')[0], result('B')[0]))
        logger.info('Mean                 is: %-28s ' % result(signal.mean)[0])
        logger.info('Slope                is: %-28s ' %
                    result(signal.slope)[0])
        logger.info('Asymmetry            is: %-28s ' % result(signal.asym)[0])

    models.add(model)