def test_bifstudentT(): logger.info ('Test bifurcated StudentT_pdf: bifurcated Student-t' ) model = Models.Fit1D ( signal = Models.BifurcatedStudentT_pdf ( name = 'BfST' , xvar = mass , nL = 25 , nR = 25 , mean = signal_gauss.mean , sigma = signal_gauss.sigma ) , background = Models.Bkg_pdf ('BkgST2', xvar = mass , power = 0 )) signal = model.signal model.S.setVal(5000) model.B.setVal( 500) with rooSilent() : result, frame = model. fitTo ( dataset0 ) signal.nL .release() signal.nR .release() signal.sigma.release() result, frame = model. fitTo ( dataset0 ) if 0 != result.status() or 3 != result.covQual() : logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % ( result.status() , result.covQual () ) ) print(result) else : logger.info ( 'Signal & Background are: %-28s & %-28s ' % ( result ( 'S' )[0] , result( 'B' )[0] ) ) logger.info ( 'Mean is: %-28s ' % result ( signal.mean )[0] ) logger.info ( 'Sigma is: %-28s ' % result ( signal.sigma )[0] ) logger.info ( 'Asymmetry is: %-28s ' % result ( signal.asym )[0] ) logger.info ( 'n(L) is: %-28s ' % result ( signal.nL )[0] ) logger.info ( 'n(R) is: %-28s ' % result ( signal.nR )[0] ) models.add ( model )
def test_bifstudentT(): logger.info('Test bifurcated StudentT_pdf: bifurcated Student-t') model = Models.Fit1D(signal=Models.BifurcatedStudentT_pdf( name='BfST', xvar=mass, nL=25, nR=25, mean=signal_gauss.mean, sigma=signal_gauss.sigma), background=Models.Bkg_pdf('BkgST2', xvar=mass, power=0), S=S, B=B) signal = model.signal model.S.setVal(5000) model.B.setVal(500) with rooSilent(): result, frame = model.fitTo(dataset0) signal.nL.release() signal.nR.release() signal.sigma.release() result, frame = model.fitTo(dataset0) model.draw(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) logger.info("Bifurkated Student's t-function\n%s" % result.table(prefix="# ")) models.add(model)