def test_gengauss_v1(): logger.info('Test GenGaussV1_pdf: Generalized Gaussian V1') model_gauss_gv1 = Models.Fit1D(signal=Models.GenGaussV1_pdf( name='Gv1', xvar=mass, mean=signal_gauss.mean), background=Models.Bkg_pdf('BkgGGV1', xvar=mass, power=0), S=S, B=B) model_gauss_gv1.signal.beta.fix(2) model_gauss_gv1.signal.mean.fix(m.value()) model_gauss_gv1.S.setVal(5000) model_gauss_gv1.B.setVal(500) with rooSilent(): result, frame = model_gauss_gv1.fitTo(dataset0) model_gauss_gv1.signal.alpha.release() result, frame = model_gauss_gv1.fitTo(dataset0) model_gauss_gv1.signal.mean.release() result, frame = model_gauss_gv1.fitTo(dataset0) model_gauss_gv1.draw(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) logger.info('generalized Gaussian(v1) function\n%s' % result.table(prefix="# ")) models.add(model_gauss_gv1)
def test_gengauss_v1(): logger.info('Test GenGaussV1_pdf: Generalized Gaussian V1') model_gauss_gv1 = Models.Fit1D(signal=Models.GenGaussV1_pdf( name='Gv1', mass=mass, mean=signal_gauss.mean), background=Models.Bkg_pdf('BkgGGV1', mass=mass, power=0)) model_gauss_gv1.signal.beta.fix(2) model_gauss_gv1.signal.mean.fix(m.value()) model_gauss_gv1.s.setVal(5000) model_gauss_gv1.b.setVal(500) with rooSilent(): result, frame = model_gauss_gv1.fitTo(dataset0) model_gauss_gv1.signal.alpha.release() result, frame = model_gauss_gv1.fitTo(dataset0) model_gauss_gv1.signal.mean.release() result, frame = model_gauss_gv1.fitTo(dataset0) if 0 != result.status() or 3 != result.covQual(): logger.warning('Fit is not perfect MIGRAD=%d QUAL=%d ' % (result.status(), result.covQual())) print result else: logger.info('Signal & Background are: %-28s & %-28s ' % (result('S')[0], result('B')[0])) models.add(model_gauss_gv1)