示例#1
0
def complex_histo_draw(file_name, val_1_col, err_1_col, val_2_col, err_2_col,
                       val_3_col, err_3_col, val_4_col, err_4_col):
    #from csv to numpy-array
    data = numpy.genfromtxt(file_name, delimiter=',')

    #binning
    y_bins = [2.25, 2.75, 3.25, 3.75, 4.25]
    pt_bins = [3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20]
    length_x = numpy.size(data, 0)

    #histogram for all bins
    hist_os = h2_axes(y_bins, pt_bins)

    #histograms with ratios & yeilds
    hist_y1 = h1_axis(pt_bins)
    hist_y2 = h1_axis(pt_bins)
    hist_y3 = h1_axis(pt_bins)
    hist_y4 = h1_axis(pt_bins)
    hist_array = [hist_y1, hist_y2, hist_y3, hist_y4]

    #filling loop
    pt_bin = 1
    y_bin = 1
    for j in range(length_x - 1):
        if pt_bin == len(pt_bins):
            y_bin += 1
            pt_bin = 1
        bin_VE_1 = VE(data[j + 1, val_1_col], data[j + 1, err_1_col]**2)
        bin_VE_2 = VE(data[j + 1, val_2_col], data[j + 1, err_2_col]**2)
        bin_VE_3 = VE(data[j + 1, val_3_col], data[j + 1, err_3_col]**2)
        bin_VE_4 = VE(data[j + 1, val_4_col], data[j + 1, err_4_col]**2)

        #fill histogram with bins values
        bin_val = bin_VE_2 * bin_VE_4 / (bin_VE_1 * bin_VE_3)

        #1. uncomment if one need to non-round-values
        hist_os.SetBinContent(y_bin, pt_bin, bin_val.value())
        hist_os.SetBinError(y_bin, pt_bin, bin_val.error())

        #2. uncomment if one need to round-values
        #hist_os.SetBinContent(y_bin, pt_bin, round(bin_val.value()))
        #hist_os.SetBinError(y_bin, pt_bin, round(bin_val.error()))

        #stuff for changing bin's colors which determine by Z axis range in 2d hist
        #hist_os.SetMinimum(0.)
        #hist_os.SetMaximum(0.08)

        #fill histogram with R-values
        hist_array[y_bin - 1].SetBinContent(pt_bin, 100 * (bin_val.value()))
        hist_array[y_bin - 1].SetBinError(pt_bin, 100 * (bin_val.error()))

        pt_bin += 1

    return hist_os, hist_array[0], hist_array[1], hist_array[2], hist_array[3]
示例#2
0
def h2(file_name, xvar, x_bins, yvar, y_bins, zvar):
    "Create 2d histo"
    h2 = h2_axes(x_bins, y_bins)
    print("\nCreating 2D-histo:")
    print("FILE   : " + file_name)
    print("HEADER : " + header(file_name))
    print(" x_var : " + xvar)
    print(" y_var : " + yvar)
    print(" z_var : " + zvar)
    xidx, yidx, zidx = find_vars(file_name, xvar, yvar, zvar)
    with open(file_name, "r") as f:
        for line in f:
            if line[0:2] == " |":
                wl = line[1:-1].split("|")
                for w in wl:
                    x_min = float(wl[xidx].split(",")[0])
                    y_min = float(wl[yidx].split(",")[0])
                    z_val = float(wl[zidx].split("+-")[0])
                    z_err = float(wl[zidx].split("+-")[1])
                    h2[get_2d_bin(x_min, x_bins, y_min,
                                  y_bins)] = VE(z_val, z_err**2)
    return h2
示例#3
0
def test_basic_2D   () :
    
    logger.info ( 'Test for very basic operations with 2D-histograms')

    h2 = h2_axes ( [1,2,3,4,5,6,7] , [1,2,3,4,5] )

    h2 += lambda x,y: VE(1,1)+VE(x*x+2*y*y,x*x+2*y*y)

    ## access the content
    logger.info ( "h[%1d, %1d]=%s"  % ( 2    , 3 , h2[2,3]  ) )
    logger.info ( "h[%1d][%1d]=%s"  % ( 2    , 3 , h2[2][3] ) )
    logger.info ( "h[%1d](%.2f)=%s" % ( 2    , 3.01 , h2[2](3.01   ) ) )
    logger.info ( "h(%.2f,%.2f)=%s" % ( 2.01 , 3.01 , h2(2.01,3.01 ) ) )    

    ## get the 1st X-slice 
    hx = h2.sliceX ( 1 )

    ## get the slice in 1,4,5 X-bins 
    hx = h2.sliceX ( [1,4,5] )
    
    ## get the 2nd Y-slice 
    hy = h2.sliceY ( 2 )
    
    ## get the slice in 1,3,5 Y-bins 
    hy = h2.sliceY ( [1,3,4] )

    ## projection in X 
    hx = h2.projX() 

    ## projection in Y
    hy = h2.projY() 

    logger.info ( '  minmax  %20s' % str( h2. minmax() ) )
    logger.info ( 'x-minmax  %20s' % str( h2.xminmax() ) )
    logger.info ( 'y-minmax  %20s' % str( h2.yminmax() ) )
    logger.info ( 'z-minmax  %20s' % str( h2.zminmax() ) )
def prepare_data():
    #

    seed = 1234567890
    random.seed(seed)
    logger.info('Test *RANDOM* data will be generated/seed=%s' % seed)
    ## prepare "data" histograms:
    # 1) 2D histograms
    ix, iy = 30, 30
    hdata = h2_axes([xmax / ix * i for i in range(ix + 1)],
                    [ymax / iy * i for i in range(iy + 1)])
    # 2) non-equal binning 1D histograms for x-component
    hxdata = h1_axis([i for i in range(5)] + [5 + i * 0.2 for i in range(50)] +
                     [15 + i for i in range(6)])
    # 2) equal binning 1D histograms for y-component
    hydata = h1_axis([i * 0.5 for i in range(31)])

    assert hdata.xmax() == xmax, 'XMAX is invalid!'
    assert hdata.ymax() == ymax, 'YMAX is invalid!'
    assert hxdata.xmax() == xmax, 'XMAX is invalid!'
    assert hydata.xmax() == ymax, 'XMAX is invalid!'

    with ROOT.TFile.Open(testdata, 'recreate') as mc_file:
        mc_file.cd()

        datatree = ROOT.TTree('DATA_tree', 'data-tree')
        datatree.SetDirectory(mc_file)

        from array import array
        xvar = array('f', [0])
        yvar = array('f', [0])
        datatree.Branch('x', xvar, 'x/F')
        datatree.Branch('y', yvar, 'y/F')

        for i in range(N1):

            x, y = -1, -1

            while not 0 <= x < xmax or not 0 <= y < ymax:

                v1 = random.gauss(0, 3)
                v2 = random.gauss(0, 2)

                x = 5 + v1 + v2
                y = 12 + v1 - v2

            hdata.Fill(x, y)
            hxdata.Fill(x)
            hydata.Fill(y)

            xvar[0] = x
            yvar[0] = y

            datatree.Fill()

        for i in range(N1):

            x, y = -1, -1

            while not 0 <= x < xmax or not 0 <= y < ymax:

                v1 = random.gauss(0, 3)
                v2 = random.gauss(0, 2)

                x = 15 + v1
                y = 4 + v2

            hdata.Fill(x, y)
            hxdata.Fill(x)
            hydata.Fill(y)

            xvar[0] = x
            yvar[0] = y

            datatree.Fill()

        for i in range(N1):

            x, y = -1, -1

            while not 0 <= x < xmax or not 0 <= y < ymax:

                v1 = random.gauss(0, 3)
                v2 = random.gauss(0, 2)

                x = 15 + v1 - v2
                y = 12 + v1 + v2

            hdata.Fill(x, y)
            hxdata.Fill(x)
            hydata.Fill(y)

            xvar[0] = x
            yvar[0] = y

            datatree.Fill()

        for i in range(0, 4 * N1):

            x = random.uniform(0, xmax)
            y = random.uniform(0, ymax)

            hdata.Fill(x, y)
            hxdata.Fill(x)
            hydata.Fill(y)

            xvar[0] = x
            yvar[0] = y

            datatree.Fill()

        datatree.Write()

        ## write the histogram
        mc_file[tag_data] = hdata
        mc_file[tag_datax] = hxdata
        mc_file[tag_datay] = hydata

        mctree = ROOT.TTree(tag_mc, 'mc-tree')
        mctree.SetDirectory(mc_file)

        from array import array
        xvar = array('f', [0.0])
        yvar = array('f', [0.0])
        mctree.Branch('x', xvar, 'x/F')
        mctree.Branch('y', yvar, 'y/F')

        for i in range(2 * N2):

            xv = random.uniform(0, xmax)
            yv = random.uniform(0, ymax)

            xvar[0] = xv
            yvar[0] = yv

            mctree.Fill()

        fx = lambda x: (x / 10.0 - 1)**2
        fy = lambda y: (y / 7.5 - 1)**2

        for i in range(N2):

            while True:
                xv = random.uniform(0, xmax)
                if random.uniform(0, 1) < fx(xv): break

            while True:
                yv = random.uniform(0, ymax)
                if random.uniform(0, 1) < fy(yv): break

            xvar[0] = xv
            yvar[0] = yv

            mctree.Fill()

        mctree.Write()
        mc_file.ls()
示例#5
0
def complex_histo_draw(file_name, epidlc_val, epidsc_val, se1_val, se1_err,
                       se0_val, se0_err, se2_val):
    #from csv to numpy-array
    data = numpy.genfromtxt(file_name, delimiter=',')
    srtformat = "{:7.5f}"

    #binning
    y_bins = [2.25, 2.75, 3.25, 3.75, 4.25]
    pt_bins = [3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20]
    length_x = numpy.size(data, 0)

    #histogram for all bins
    hist_os = h2_axes(y_bins, pt_bins)

    #histograms with ratios & yeilds
    hist_y1 = h1_axis(pt_bins)
    hist_y2 = h1_axis(pt_bins)
    hist_y3 = h1_axis(pt_bins)
    hist_y4 = h1_axis(pt_bins)
    hist_array = [hist_y1, hist_y2, hist_y3, hist_y4]

    #filling loop
    pt_bin = 1
    y_bin = 1
    for j in range(length_x - 1):
        if pt_bin == len(pt_bins):
            y_bin += 1
            pt_bin = 1
            print(str("\hline"))
            print("\multicolumn{6}{c}{$y\in$~(" + str(data[j + 1, 1]) + "," +
                  str(data[j + 1, 2]) + ")}" + "\\" + "\\")
            print(str("\hline"))
        r = data[j + 1, 13] / data[j + 1, 14]
        r_i = data[j + 1, 18] / data[j + 1, 19]
        r_s = data[j + 1, 20] / data[j + 1, 21]

        s1 = abs(r - r_s)
        s2 = abs(r - r_i)
        s3 = data[j + 1, 25]
        summ = (s1**2 + s2**2 + s3**2)**0.5
        bin_VE_1 = VE(summ, 0)

        #fill histogram with bins values
        bin_val = bin_VE_1

        #1. uncomment if one need to non-round-values
        hist_os.SetBinContent(y_bin, pt_bin, bin_val.value())
        hist_os.SetBinError(y_bin, pt_bin, bin_val.error())

        print("(" + str(data[j + 1, 3]) + "," + str(data[j + 1, 4]) + ") & " +
              srtformat.format(r) + " & " + srtformat.format(s1) + " & " +
              srtformat.format(s2) + " & " + srtformat.format(s3) + " & " +
              srtformat.format(summ) + "\\" + "\\")
        #2. uncomment if one need to round-values
        #hist_os.SetBinContent(y_bin, pt_bin, round(bin_val.value()))
        #hist_os.SetBinError(y_bin, pt_bin, round(bin_val.error()))

        #hist style
        #remove stat box
        hist_os.SetStats(0)
        #set z range
        hist_os.SetMinimum(0.)
        hist_os.SetMaximum(0.06)

        pt_bin += 1
    print("\n")
    return hist_os