示例#1
0
文件: eg3.py 项目: pbugnion/vegas
def main():
    print(
        gv.ranseed(
            (2050203335594632366, 8881439510219835677, 2605204918634240925)))

    log_stdout('eg3a.out')
    integ = vegas.Integrator(4 * [[0, 1]])

    # adapt grid
    training = integ(f(), nitn=10, neval=1000)

    # evaluate multi-integrands
    result = integ(f(), nitn=10, neval=5000)
    print('I[0] =', result[0], '  I[1] =', result[1], '  I[2] =', result[2])
    print('Q = %.2f\n' % result.Q)
    print('<x> =', result[1] / result[0])
    print('sigma_x**2 = <x**2> - <x>**2 =',
          result[2] / result[0] - (result[1] / result[0])**2)
    print('\ncorrelation matrix:\n', gv.evalcorr(result))
    unlog_stdout()
    r = gv.gvar(gv.mean(result), gv.sdev(result))
    print(r[1] / r[0])
    print((r[1] / r[0]).sdev / (result[1] / result[0]).sdev)
    print(r[2] / r[0] - (r[1] / r[0])**2)
    print(result.summary())
示例#2
0
def main():
    print(gv.ranseed((1814855126, 100213625, 262796317)))

    log_stdout('eg3a.out')
    integ = vegas.Integrator(4 * [[0, 1]])

    # adapt grid
    training = integ(f(), nitn=10, neval=2000)

    # evaluate multi-integrands
    result = integ(f(), nitn=10, neval=10000)
    print('I[0] =', result[0], '  I[1] =', result[1], '  I[2] =', result[2])
    print('Q = %.2f\n' % result.Q)
    print('<x> =', result[1] / result[0])
    print('sigma_x**2 = <x**2> - <x>**2 =',
          result[2] / result[0] - (result[1] / result[0])**2)
    print('\ncorrelation matrix:\n', gv.evalcorr(result))
    unlog_stdout()
    r = gv.gvar(gv.mean(result), gv.sdev(result))
    print(r[1] / r[0])
    print((r[1] / r[0]).sdev / (result[1] / result[0]).sdev)
    print(r[2] / r[0] - (r[1] / r[0])**2)
    print((r[2] / r[0] - (r[1] / r[0])**2).sdev /
          (result[2] / result[0] - (result[1] / result[0])**2).sdev)
    print(result.summary())

    # do it again for a dictionary
    print(gv.ranseed((1814855126, 100213625, 262796317)))
    integ = vegas.Integrator(4 * [[0, 1]])

    # adapt grid
    training = integ(f(), nitn=10, neval=2000)

    # evaluate the integrals
    result = integ(fdict(), nitn=10, neval=10000)
    log_stdout('eg3b.out')
    print(result)
    print('Q = %.2f\n' % result.Q)
    print('<x> =', result['x'] / result['1'])
    print('sigma_x**2 = <x**2> - <x>**2 =',
          result['x**2'] / result['1'] - (result['x'] / result['1'])**2)
    unlog_stdout()
示例#3
0
文件: eg6.py 项目: zhanfengdog/vegas
def main():
    np.random.seed(12)
    log_stdout('eg6a.out')
    itg = vegas.Integrator(dim * [[0, 1]], alpha=0.25)
    nstrat = 5 * [12] + (dim - 5) * [1]
    itg(f, nitn=15, nstrat=nstrat)
    r = itg(f, nitn=5, nstrat=nstrat)
    print(r.summary())
    print('nstrat =', np.array(itg.nstrat))
    unlog_stdout()
    print()

    log_stdout('eg6b.out')
    itg = vegas.Integrator(dim * [[0, 1]], alpha=0.25)
    neval = 2e6
    itg(f, nitn=15, neval=neval)
    r = itg(f, nitn=5, neval=neval)
    print(r.summary())
    print('nstrat =', np.array(itg.nstrat))
    unlog_stdout()
    print()
示例#4
0
文件: eg5.py 项目: mrnicegyu11/vegas
def main():
    dim = 5
    log_stdout('eg5a.out')
    np.random.seed(123)
    map = vegas.AdaptiveMap(dim * [(0, 1)])
    itg = vegas.Integrator(map, alpha=0.1)
    r = itg(f, neval=1e4, nitn=5)
    print(r.summary())
    unlog_stdout()

    log_stdout('eg5b.out')
    np.random.seed(1234567)
    map = vegas.AdaptiveMap(dim * [(0, 1)])
    x = np.concatenate([
        np.random.normal(loc=0.45, scale=3 / 50, size=(1000, dim)),
        np.random.normal(loc=0.7, scale=3 / 50, size=(1000, dim)),
    ])
    map.adapt_to_samples(x, f, nitn=5)
    itg = vegas.Integrator(map, alpha=0.1)
    r = itg(f, neval=1e4, nitn=5)
    print(r.summary())
    unlog_stdout()

    log_stdout('eg5c.out')
    np.random.seed(123)

    def smc(f, neval, dim):
        " integrates f(y) over dim-dimensional unit hypercube "
        y = np.random.uniform(0, 1, (neval, dim))
        fy = f(y)
        return (np.average(fy), np.std(fy) / neval**0.5)

    def g(y):
        jac = np.empty(y.shape[0], float)
        x = np.empty(y.shape, float)
        map.map(y, x, jac)
        return jac * f(x)

    # with map
    r = smc(g, 50_000, dim)
    print('   SMC + map:', f'{r[0]:.3f} +- {r[1]:.3f}')

    # without map
    r = smc(f, 50_000, dim)
    print('SMC (no map):', f'{r[0]:.3f} +- {r[1]:.3f}')
示例#5
0
文件: eg6.py 项目: gplepage/lsqfit
   ])

# print (y)

print()
log_prior = BufferDict()
log_prior['log(a)'] = log(gvar(0.02, 0.02))
sqrt_prior = BufferDict()
sqrt_prior['sqrt(a)'] = sqrt(gvar(0.02, 0.02))
prior = BufferDict(a = gvar(0.02, 0.02))
unif_prior = BufferDict()
unif_prior['ga(a)'] = BufferDict.uniform('ga', 0, 0.04)

for p in [prior, log_prior, sqrt_prior, unif_prior]:
    key = list(p.keys())[0].replace('(a)','_a')
    log_stdout("eg6-{}.out".format(key))
    def fcn(p, N=len(y)):
	    return N*[p['a']]
    fit = nonlinear_fit(prior=p, fcn=fcn, data=(y))
    print (fit)
    print ("a =", fit.p['a'])



if DO_PLOT:
    log_stdout('eg6-hist.out')
    print(fit)
    a = fit.p['a']
    print('a =', a)
    import matplotlib.pyplot as plt
    fs = plt.rcParams['figure.figsize']
示例#6
0
def main():
    print(
        gv.ranseed(
            (5751754790502652836, 7676372623888309739, 7570829798026950508)))

    integ = vegas.Integrator([[-1., 1.], [0., 1.], [0., 1.], [0., 1.]],
                             # analyzer=vegas.reporter(),
                             )

    if SAVE_OUTPUT:
        log_stdout('eg1a.out')
    result = integ(f, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))
    integ.map.show_grid(30,
                        axes=[(0, 1), (2, 3), (0, None), (None, 1), (2, 0),
                              (3, 0)],
                        shrink=False)

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1b.out')
    result = integ(f, nitn=100, neval=1000)
    print('larger nitn  => %s    Q = %.2f' % (result, result.Q))
    result = integ(f, nitn=10, neval=1e4)
    print('larger neval => %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1c.out')
    # integ.set(map=[[-2., .4, .6, 2.], [0, .4, .6, 2.], [0,.4, .6, 2.], [0.,.4, .6, 2.]])
    # integ.set(map=[[-2., 2.], [0, 2.], [0, 2.], [0., 2.]])
    integ = vegas.Integrator([[-2., 2.], [0, 2.], [0, 2.], [0., 2.]], )
    result = integ(f, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1c1.out')

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1d.out')
    integ(f, nitn=7, neval=1000)
    result = integ(f, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1e.out')
    integ = vegas.Integrator([[-1, 1]] + 3 * [[0, 1]])
    integ(f, nitn=10, neval=1000)

    def g(x):
        return x[0] * f(x)

    result = integ(g, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1f.out')
    # integ(f_sphere, nitn=10, neval=400000, alpha=0.25)
    # result = integ(f_sphere, nitn=10, neval=400000, alpha=0.25, beta=0.75)#, analyzer=vegas.reporter(5))
    integ(f_sphere, nitn=10, neval=1000, alpha=0.5)
    result = integ(f_sphere, nitn=10, neval=1000,
                   alpha=0.5)  #, analyzer=vegas.reporter(5))
    # print(integ.settings())
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1g.out')
    integ(f_sphere, nitn=10, neval=1000, alpha=0.1)
    result = integ(f_sphere, nitn=10, neval=1000, adapt=False)  # alpha=0.1)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1h.out')
    integ(f_sphere, nitn=10, neval=1000, alpha=0.1)
    result = integ(f_sphere, nitn=10, neval=1000, alpha=0.1)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        # log_stdout('eg1h.out')
    integ = vegas.Integrator(4 * [[0, 1]])
    integ(f2, nitn=10, neval=4e4)
    result = integ(f2, nitn=10, neval=4e4,
                   beta=0.75)  # , analyzer=vegas.reporter())
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))
    integ.map.show_grid(70)
    print(integ(f2, nitn=10, neval=4e4, beta=0.).summary())
示例#7
0
def main():
    ### 1) least-squares fit to the data
    x = np.array([
        0.2, 0.4, 0.6, 0.8, 1.,
        1.2, 1.4, 1.6, 1.8, 2.,
        2.2, 2.4, 2.6, 2.8, 3.,
        3.2, 3.4, 3.6, 3.8
        ])
    y = gv.gvar([
        '0.38(20)', '2.89(20)', '0.85(20)', '0.59(20)', '2.88(20)',
        '1.44(20)', '0.73(20)', '1.23(20)', '1.68(20)', '1.36(20)',
        '1.51(20)', '1.73(20)', '2.16(20)', '1.85(20)', '2.00(20)',
        '2.11(20)', '2.75(20)', '0.86(20)', '2.73(20)'
        ])
    prior = make_prior()
    fit = lsqfit.nonlinear_fit(data=(x, y), prior=prior, fcn=fitfcn)
    if LSQFIT_ONLY:
        log_stdout('case-outliers-lsq.out')
    elif not MULTI_W:
        log_stdout('case-outliers.out')
    print(fit)

    # plot data
    plt.errorbar(x, gv.mean(y), gv.sdev(y), fmt='o', c='b')

    # plot fit function
    xline = np.linspace(x[0], x[-1], 100)
    yline = fitfcn(xline, fit.p)
    plt.plot(xline, gv.mean(yline), 'k:')
    # yp = gv.mean(yline) + gv.sdev(yline)
    # ym = gv.mean(yline) - gv.sdev(yline)
    # plt.fill_between(xline, yp, ym, color='0.8')
    plt.xlabel('x')
    plt.ylabel('y')
    plt.savefig('case-outliers1.png', bbox_inches='tight')
    if LSQFIT_ONLY:
        return

    ### 2) Bayesian integral with modified PDF
    pdf = ModifiedPDF(data=(x, y), fcn=fitfcn, prior=prior)

    # integrator for expectation values with modified PDF
    expval = vegas.PDFIntegrator(fit.p, pdf=pdf)

    # adapt integrator to pdf
    expval(neval=1000, nitn=15)

    # evaluate expectation value of g(p)
    def g(p):
        w = p['w']
        c = p['c']
        return dict(w=[w, w**2], mean=c, outer=np.outer(c,c))

    results = expval(g, neval=1000, nitn=15, adapt=False)
    print(results.summary())
    # expval.map.show_grid(15)

    if MULTI_W:
        log_stdout('case-outliers-multi.out')

    # parameters c[i]
    mean = results['mean']
    cov = results['outer'] - np.outer(mean, mean)
    c = mean + gv.gvar(np.zeros(mean.shape), gv.mean(cov))
    print('c =', c)
    print(
        'corr(c) =',
        np.array2string(gv.evalcorr(c), prefix=10 * ' '),
        '\n',
        )

    # parameter w
    wmean, w2mean = results['w']
    wsdev = gv.mean(w2mean - wmean ** 2) ** 0.5
    w = wmean + gv.gvar(np.zeros(np.shape(wmean)), wsdev)
    print('w =', w, '\n')

    # Bayes Factor
    print('logBF =', np.log(results.pdfnorm))
    sys.stdout = STDOUT

    if MULTI_W:
        return

    # add new fit to plot
    yline = fitfcn(xline, dict(c=c))
    plt.plot(xline, gv.mean(yline), 'r--')
    yp = gv.mean(yline) + gv.sdev(yline)
    ym = gv.mean(yline) - gv.sdev(yline)
    plt.fill_between(xline, yp, ym, color='r', alpha=0.2)
    plt.savefig('case-outliers2.png', bbox_inches='tight')
示例#8
0
import numpy as np
import gvar

RMAX = (2 * 0.5**2)**0.5


def fcn(x):
    dx2 = 0.0
    for d in range(2):
        dx2 += (x[d] - 0.5)**2
    I = np.exp(-dx2)
    # add I to appropriate bin in dI
    dI = np.zeros(5, dtype=float)
    dr = RMAX / len(dI)
    j = int(dx2**0.5 / dr)
    dI[j] = I
    return dict(I=I, dI=dI)


log_stdout('eg4.out')

integ = vegas.Integrator(2 * [(0, 1)])

# results returned in a dictionary
result = integ(fcn)
print(result.summary())
print('   I =', result['I'])
print('dI/I =', result['dI'] / result['I'])
print('sum(dI/I) =', sum(result['dI']) / result['I'])
# print(gvar.evalcorr(result['dI'] / result['I']))
示例#9
0
import numpy as np
from outputsplitter import log_stdout

def f(x):
   return x[0] * x[1] ** 2

m = vegas.AdaptiveMap([[0, 1], [0, 1]], ninc=5) 

ny = 1000
y = np.random.uniform(0., 1., (ny, 2))  # 1000 random y's

x = np.empty(y.shape, float)            # work space
jac = np.empty(y.shape[0], float)
f2 = np.empty(y.shape[0], float)

log_stdout('eg2a.out')
print('initial grid:')
print m.settings()

for itn in range(5):                    # 20 iterations to adapt
   m.map(y, x, jac)                     # compute x's and jac

   for j in range(ny):                  # compute training data
      f2[j] = (jac[j] * f(x[j])) ** 2

   m.add_training_data(y, f2)           # adapt
   m.adapt(alpha=1.5)

   print('iteration %d:' % itn)
   print(m.settings())
示例#10
0
文件: eg1.py 项目: freephys/vegas
def main():
    print(gv.ranseed(
        (5751754790502652836, 7676372623888309739, 7570829798026950508)
        ))

    integ = vegas.Integrator(
        [[-1., 1.], [0., 1.], [0., 1.], [0., 1.]],
        # analyzer=vegas.reporter(),
        )

    if SAVE_OUTPUT:
        log_stdout('eg1a.out') 
    result = integ(f, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))
    integ.map.show_grid(
        30, 
        axes=[(0, 1), (2, 3), (0, None), (None, 1), (2, 0), (3, 0)], 
        shrink=False
        )

    if SAVE_OUTPUT:
        unlog_stdout() 
        log_stdout('eg1b.out')
    result = integ(f, nitn=100, neval=1000 )
    print('larger nitn  => %s    Q = %.2f' % (result, result.Q))
    result = integ(f, nitn=10, neval=1e4)
    print('larger neval => %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1c.out')
    # integ.set(map=[[-2., .4, .6, 2.], [0, .4, .6, 2.], [0,.4, .6, 2.], [0.,.4, .6, 2.]])
    # integ.set(map=[[-2., 2.], [0, 2.], [0, 2.], [0., 2.]])
    integ = vegas.Integrator(
      [[-2., 2.], [0, 2.], [0, 2.], [0., 2.]],
      )    
    result = integ(f, nitn=10, neval=1000) 
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1c1.out')

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1d.out')
    integ(f, nitn=7, neval=1000)
    result = integ(f, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1e.out')
    integ = vegas.Integrator([[-1,1]] + 3 * [[0, 1]])
    integ(f, nitn=10, neval=1000)
    def g(x):
        return x[0] * f(x)
    result = integ(g, nitn=10, neval=1000)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1f.out')
    # integ(f_sphere, nitn=10, neval=400000, alpha=0.25)
    # result = integ(f_sphere, nitn=10, neval=400000, alpha=0.25, beta=0.75)#, analyzer=vegas.reporter(5))
    integ(f_sphere, nitn=10, neval=1000, alpha=0.5)
    result = integ(f_sphere, nitn=10, neval=1000, alpha=0.5)#, analyzer=vegas.reporter(5))
    # print(integ.settings())
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1g.out')
    integ(f_sphere, nitn=10, neval=1000, alpha=0.1)
    result = integ(f_sphere, nitn=10, neval=1000, adapt=False) # alpha=0.1)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        log_stdout('eg1h.out')
    integ(f_sphere, nitn=10, neval=1000, alpha=0.1)
    result = integ(f_sphere, nitn=10, neval=1000, alpha=0.1)
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))

    if SAVE_OUTPUT:
        unlog_stdout()
        # log_stdout('eg1h.out')
    integ = vegas.Integrator(4 * [[0, 1]])
    integ(f2, nitn=10, neval=4e4)
    result = integ(f2, nitn=10, neval=4e4, beta=0.75) # , analyzer=vegas.reporter())
    print(result.summary())
    print('result = %s    Q = %.2f' % (result, result.Q))
    integ.map.show_grid(70)
    print(integ(f2, nitn=10, neval=4e4, beta=0.).summary())