def run(params): args = candle.ArgumentStruct(**params) seed = args.rng_seed candle.set_seed(seed) # Construct extension to save model ext = p1b1.extension_from_parameters(params, '.keras') candle.verify_path(params['save']) prefix = '{}{}'.format(params['save'], ext) logfile = params['logfile'] if params['logfile'] else prefix + '.log' candle.set_up_logger(logfile, p1b1.logger, params['verbose']) p1b1.logger.info('Params: {}'.format(params)) # Get default parameters for initialization and optimizer functions keras_defaults = candle.keras_default_config() # Load dataset x_train, y_train, x_val, y_val, x_test, y_test, x_labels, y_labels = p1b1.load_data( params, seed) # cache_file = 'data_l1000_cache.h5' # save_cache(cache_file, x_train, y_train, x_val, y_val, x_test, y_test, x_labels, y_labels) # x_train, y_train, x_val, y_val, x_test, y_test, x_labels, y_labels = load_cache(cache_file) p1b1.logger.info("Shape x_train: {}".format(x_train.shape)) p1b1.logger.info("Shape x_val: {}".format(x_val.shape)) p1b1.logger.info("Shape x_test: {}".format(x_test.shape)) p1b1.logger.info("Range x_train: [{:.3g}, {:.3g}]".format( np.min(x_train), np.max(x_train))) p1b1.logger.info("Range x_val: [{:.3g}, {:.3g}]".format( np.min(x_val), np.max(x_val))) p1b1.logger.info("Range x_test: [{:.3g}, {:.3g}]".format( np.min(x_test), np.max(x_test))) p1b1.logger.debug('Class labels') for i, label in enumerate(y_labels): p1b1.logger.debug(' {}: {}'.format(i, label)) # clf = build_type_classifier(x_train, y_train, x_val, y_val) n_classes = len(y_labels) cond_train = y_train cond_val = y_val cond_test = y_test input_dim = x_train.shape[1] cond_dim = cond_train.shape[1] latent_dim = params['latent_dim'] activation = params['activation'] dropout = params['drop'] dense_layers = params['dense'] dropout_layer = keras.layers.noise.AlphaDropout if params[ 'alpha_dropout'] else Dropout # Initialize weights and learning rule initializer_weights = candle.build_initializer(params['initialization'], keras_defaults, seed) initializer_bias = candle.build_initializer('constant', keras_defaults, 0.) if dense_layers is not None: if type(dense_layers) != list: dense_layers = list(dense_layers) else: dense_layers = [] # Encoder Part x_input = Input(shape=(input_dim, )) cond_input = Input(shape=(cond_dim, )) h = x_input if params['model'] == 'cvae': h = keras.layers.concatenate([x_input, cond_input]) for i, layer in enumerate(dense_layers): if layer > 0: x = h h = Dense(layer, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)(h) if params['residual']: try: h = keras.layers.add([h, x]) except ValueError: pass if params['batch_normalization']: h = BatchNormalization()(h) if dropout > 0: h = dropout_layer(dropout)(h) if params['model'] == 'ae': encoded = Dense(latent_dim, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)(h) else: epsilon_std = params['epsilon_std'] z_mean = Dense(latent_dim, name='z_mean')(h) z_log_var = Dense(latent_dim, name='z_log_var')(h) encoded = z_mean def vae_loss(x, x_decoded_mean): xent_loss = binary_crossentropy(x, x_decoded_mean) kl_loss = -0.5 * K.sum( 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var), axis=-1) return K.mean(xent_loss + kl_loss / input_dim) def sampling(params): z_mean_, z_log_var_ = params batch_size = K.shape(z_mean_)[0] epsilon = K.random_normal(shape=(batch_size, latent_dim), mean=0., stddev=epsilon_std) return z_mean_ + K.exp(z_log_var_ / 2) * epsilon z = Lambda(sampling, output_shape=(latent_dim, ))([z_mean, z_log_var]) if params['model'] == 'cvae': z_cond = keras.layers.concatenate([z, cond_input]) # Decoder Part decoder_input = Input(shape=(latent_dim, )) h = decoder_input if params['model'] == 'cvae': h = keras.layers.concatenate([decoder_input, cond_input]) for i, layer in reversed(list(enumerate(dense_layers))): if layer > 0: x = h h = Dense(layer, activation=activation, kernel_initializer=initializer_weights, bias_initializer=initializer_bias)(h) if params['residual']: try: h = keras.layers.add([h, x]) except ValueError: pass if params['batch_normalization']: h = BatchNormalization()(h) if dropout > 0: h = dropout_layer(dropout)(h) decoded = Dense(input_dim, activation='sigmoid', kernel_initializer=initializer_weights, bias_initializer=initializer_bias)(h) # Build autoencoder model if params['model'] == 'cvae': encoder = Model([x_input, cond_input], encoded) decoder = Model([decoder_input, cond_input], decoded) model = Model([x_input, cond_input], decoder([z, cond_input])) loss = vae_loss metrics = [xent, corr, mse] elif params['model'] == 'vae': encoder = Model(x_input, encoded) decoder = Model(decoder_input, decoded) model = Model(x_input, decoder(z)) loss = vae_loss metrics = [xent, corr, mse] else: encoder = Model(x_input, encoded) decoder = Model(decoder_input, decoded) model = Model(x_input, decoder(encoded)) loss = params['loss'] metrics = [xent, corr] model.summary() decoder.summary() if params['cp']: model_json = model.to_json() with open(prefix + '.model.json', 'w') as f: print(model_json, file=f) # Define optimizer # optimizer = candle.build_optimizer(params['optimizer'], # params['learning_rate'], # keras_defaults) optimizer = optimizers.deserialize({ 'class_name': params['optimizer'], 'config': {} }) base_lr = params['base_lr'] or K.get_value(optimizer.lr) if params['learning_rate']: K.set_value(optimizer.lr, params['learning_rate']) model.compile(loss=loss, optimizer=optimizer, metrics=metrics) # calculate trainable and non-trainable params params.update(candle.compute_trainable_params(model)) def warmup_scheduler(epoch): lr = params['learning_rate'] or base_lr * params['batch_size'] / 100 if epoch <= 5: K.set_value(model.optimizer.lr, (base_lr * (5 - epoch) + lr * epoch) / 5) p1b1.logger.debug('Epoch {}: lr={}'.format( epoch, K.get_value(model.optimizer.lr))) return K.get_value(model.optimizer.lr) reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, min_lr=0.00001) warmup_lr = LearningRateScheduler(warmup_scheduler) checkpointer = ModelCheckpoint(params['save'] + ext + '.weights.h5', save_best_only=True, save_weights_only=True) tensorboard = TensorBoard(log_dir="tb/tb{}".format(ext)) candle_monitor = candle.CandleRemoteMonitor(params=params) timeout_monitor = candle.TerminateOnTimeOut(params['timeout']) history_logger = LoggingCallback(p1b1.logger.debug) callbacks = [candle_monitor, timeout_monitor, history_logger] if params['reduce_lr']: callbacks.append(reduce_lr) if params['warmup_lr']: callbacks.append(warmup_lr) if params['cp']: callbacks.append(checkpointer) if params['tb']: callbacks.append(tensorboard) x_val2 = np.copy(x_val) np.random.shuffle(x_val2) start_scores = p1b1.evaluate_autoencoder(x_val, x_val2) p1b1.logger.info('\nBetween random pairs of validation samples: {}'.format( start_scores)) if params['model'] == 'cvae': inputs = [x_train, cond_train] val_inputs = [x_val, cond_val] test_inputs = [x_test, cond_test] else: inputs = x_train val_inputs = x_val test_inputs = x_test outputs = x_train val_outputs = x_val test_outputs = x_test history = model.fit(inputs, outputs, verbose=2, batch_size=params['batch_size'], epochs=params['epochs'], callbacks=callbacks, validation_data=(val_inputs, val_outputs)) if params['cp']: encoder.save(prefix + '.encoder.h5') decoder.save(prefix + '.decoder.h5') plot_history(prefix, history, 'loss') plot_history(prefix, history, 'corr', 'streaming pearson correlation') # Evalute model on test set x_pred = model.predict(test_inputs) scores = p1b1.evaluate_autoencoder(x_pred, x_test) p1b1.logger.info('\nEvaluation on test data: {}'.format(scores)) x_test_encoded = encoder.predict(test_inputs, batch_size=params['batch_size']) y_test_classes = np.argmax(y_test, axis=1) plot_scatter(x_test_encoded, y_test_classes, prefix + '.latent') if params['tsne']: tsne = TSNE(n_components=2, random_state=seed) x_test_encoded_tsne = tsne.fit_transform(x_test_encoded) plot_scatter(x_test_encoded_tsne, y_test_classes, prefix + '.latent.tsne') # diff = x_pred - x_test # plt.hist(diff.ravel(), bins='auto') # plt.title("Histogram of Errors with 'auto' bins") # plt.savefig('histogram_keras.png') # generate synthetic data # epsilon_std = 1.0 # for i in range(1000): # z_sample = np.random.normal(size=(1, 2)) * epsilon_std # x_decoded = decoder.predict(z_sample) p1b1.logger.handlers = [] return history
def main(): # Get command-line parameters parser = get_p1b1_parser() args = parser.parse_args() #print('Args:', args) # Get parameters from configuration file fileParameters = p1b1.read_config_file(args.config_file) #print ('Params:', fileParameters) # Correct for arguments set by default by neon parser # (i.e. instead of taking the neon parser default value fall back to the config file, # if effectively the command-line was used, then use the command-line value) # This applies to conflictive parameters: batch_size, epochs and rng_seed if not any("--batch_size" in ag or "-z" in ag for ag in sys.argv): args.batch_size = fileParameters['batch_size'] if not any("--epochs" in ag or "-e" in ag for ag in sys.argv): args.epochs = fileParameters['epochs'] if not any("--rng_seed" in ag or "-r" in ag for ag in sys.argv): args.rng_seed = fileParameters['rng_seed'] # Consolidate parameter set. Command-line parameters overwrite file configuration gParameters = p1_common.args_overwrite_config(args, fileParameters) print('Params:', gParameters) # Determine verbosity level loggingLevel = logging.DEBUG if args.verbose else logging.INFO logging.basicConfig(level=loggingLevel, format='') # Construct extension to save model ext = p1b1.extension_from_parameters(gParameters, '.neon') # Get default parameters for initialization and optimizer functions kerasDefaults = p1_common.keras_default_config() seed = gParameters['rng_seed'] # Load dataset X_train, X_val, X_test = p1b1.load_data(gParameters, seed) print("Shape X_train: ", X_train.shape) print("Shape X_val: ", X_val.shape) print("Shape X_test: ", X_test.shape) print("Range X_train --> Min: ", np.min(X_train), ", max: ", np.max(X_train)) print("Range X_val --> Min: ", np.min(X_val), ", max: ", np.max(X_val)) print("Range X_test --> Min: ", np.min(X_test), ", max: ", np.max(X_test)) input_dim = X_train.shape[1] output_dim = input_dim # Re-generate the backend after consolidating parsing and file config gen_backend(backend=args.backend, rng_seed=seed, device_id=args.device_id, batch_size=gParameters['batch_size'], datatype=gParameters['datatype'], max_devices=args.max_devices, compat_mode=args.compat_mode) # Set input and target to X_train train = ArrayIterator(X_train) val = ArrayIterator(X_val) test = ArrayIterator(X_test) # Initialize weights and learning rule initializer_weights = p1_common_neon.build_initializer( gParameters['initialization'], kerasDefaults) initializer_bias = p1_common_neon.build_initializer( 'constant', kerasDefaults, 0.) activation = p1_common_neon.get_function(gParameters['activation'])() # Define Autoencoder architecture layers = [] reshape = None # Autoencoder layers_params = gParameters['dense'] if layers_params != None: if type(layers_params) != list: layers_params = list(layers_params) # Encoder Part for i, l in enumerate(layers_params): layers.append( Affine(nout=l, init=initializer_weights, bias=initializer_bias, activation=activation)) # Decoder Part for i, l in reversed(list(enumerate(layers_params))): if i < len(layers) - 1: layers.append( Affine(nout=l, init=initializer_weights, bias=initializer_bias, activation=activation)) layers.append( Affine(nout=output_dim, init=initializer_weights, bias=initializer_bias, activation=activation)) # Build Autoencoder model ae = Model(layers=layers) # Define cost and optimizer cost = GeneralizedCost(p1_common_neon.get_function(gParameters['loss'])()) optimizer = p1_common_neon.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) callbacks = Callbacks(ae, eval_set=val, eval_freq=1) # Seed random generator for training np.random.seed(seed) ae.fit(train, optimizer=optimizer, num_epochs=gParameters['epochs'], cost=cost, callbacks=callbacks) # model save #save_fname = "model_ae_W" + ext #ae.save_params(save_fname) # Compute errors X_pred = ae.get_outputs(test) scores = p1b1.evaluate_autoencoder(X_pred, X_test) print('Evaluation on test data:', scores) diff = X_pred - X_test # Plot histogram of errors comparing input and output of autoencoder plt.hist(diff.ravel(), bins='auto') plt.title("Histogram of Errors with 'auto' bins") plt.savefig('histogram_neon.png')
def main(): # Get command-line parameters parser = get_p1b1_parser() args = parser.parse_args() #print('Args:', args) # Get parameters from configuration file fileParameters = p1b1.read_config_file(args.config_file) #print ('Params:', fileParameters) # Consolidate parameter set. Command-line parameters overwrite file configuration gParameters = p1_common.args_overwrite_config(args, fileParameters) print('Params:', gParameters) # Construct extension to save model ext = p1b1.extension_from_parameters(gParameters, '.pt') logfile = args.logfile if args.logfile else args.save + ext + '.log' p1b1.logger.info('Params: {}'.format(gParameters)) # Get default parameters for initialization and optimizer functions kerasDefaults = p1_common.keras_default_config() seed = gParameters['rng_seed'] # Load dataset X_train, X_val, X_test = p1b1.load_data(gParameters, seed) print("Shape X_train: ", X_train.shape) print("Shape X_val: ", X_val.shape) print("Shape X_test: ", X_test.shape) print("Range X_train --> Min: ", np.min(X_train), ", max: ", np.max(X_train)) print("Range X_val --> Min: ", np.min(X_val), ", max: ", np.max(X_val)) print("Range X_test --> Min: ", np.min(X_test), ", max: ", np.max(X_test)) # Set input and target to X_train train_data = torch.from_numpy(X_train) train_tensor = data.TensorDataset(train_data, train_data) train_iter = data.DataLoader(train_tensor, batch_size=gParameters['batch_size'], shuffle=gParameters['shuffle']) # Validation set val_data = torch.from_numpy(X_val) val_tensor = torch.utils.data.TensorDataset(val_data, val_data) val_iter = torch.utils.data.DataLoader( val_tensor, batch_size=gParameters['batch_size'], shuffle=gParameters['shuffle']) # Test set test_data = torch.from_numpy(X_test) test_tensor = torch.utils.data.TensorDataset(test_data, test_data) test_iter = torch.utils.data.DataLoader( test_tensor, batch_size=gParameters['batch_size'], shuffle=gParameters['shuffle']) #net = mx.sym.Variable('data') #out = mx.sym.Variable('softmax_label') input_dim = X_train.shape[1] output_dim = input_dim # Define Autoencoder architecture layers = gParameters['dense'] activation = p1_common_pytorch.build_activation(gParameters['activation']) loss_fn = p1_common_pytorch.get_function(gParameters['loss']) ''' N1 = layers[0] NE = layers[1] net = nn.Sequential( nn.Linear(input_dim,N1), activation, nn.Linear(N1,NE), activation, nn.Linear(NE,N1), activation, nn.Linear(N1,output_dim), activation, ) ''' # Documentation indicates this should work net = nn.Sequential() if layers != None: if type(layers) != list: layers = list(layers) # Encoder Part for i, l in enumerate(layers): if i == 0: net.add_module('in_dense', nn.Linear(input_dim, l)) net.add_module('in_act', activation) insize = l else: net.add_module('en_dense%d' % i, nn.Linear(insize, l)) net.add_module('en_act%d' % i, activation) insize = l # Decoder Part for i, l in reversed(list(enumerate(layers))): if i < len(layers) - 1: net.add_module('de_dense%d' % i, nn.Linear(insize, l)) net.add_module('de_act%d' % i, activation) insize = l net.add_module('out_dense', nn.Linear(insize, output_dim)) net.add_module('out_act', activation) # Initialize weights for m in net.modules(): if isinstance(m, nn.Linear): p1_common_pytorch.build_initializer(m.weight, gParameters['initialization'], kerasDefaults) p1_common_pytorch.build_initializer(m.bias, 'constant', kerasDefaults, 0.0) # Display model print(net) # Define context # Define optimizer optimizer = p1_common_pytorch.build_optimizer(net, gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) # Seed random generator for training torch.manual_seed(seed) #use_gpu = torch.cuda.is_available() use_gpu = 0 train_loss = 0 freq_log = 1 for epoch in range(gParameters['epochs']): for batch, (in_train, _) in enumerate(train_iter): in_train = Variable(in_train) #print(in_train.data.shape()) if use_gpu: in_train = in_train.cuda() optimizer.zero_grad() output = net(in_train) loss = loss_fn(output, in_train) loss.backward() train_loss += loss.data[0] optimizer.step() if batch % freq_log == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( epoch, batch * len(in_train), len(train_iter.dataset), 100. * batch / len(train_iter), loss.data[0])) # / len(in_train))) print('====> Epoch: {} Average loss: {:.4f}'.format( epoch, train_loss / len(train_iter.dataset))) # model save #save_filepath = "model_ae_" + ext #ae.save(save_filepath) # Evalute model on valdation set for i, (in_val, _) in enumerate(val_iter): in_val = Variable(in_val) X_pred = net(in_val).data.numpy() if i == 0: in_all = in_val.data.numpy() out_all = X_pred else: in_all = np.append(in_all, in_val.data.numpy(), axis=0) out_all = np.append(out_all, X_pred, axis=0) #print ("Shape in_all: ", in_all.shape) #print ("Shape out_all: ", out_all.shape) scores = p1b1.evaluate_autoencoder(in_all, out_all) print('Evaluation on validation data:', scores) # Evalute model on test set for i, (in_test, _) in enumerate(test_iter): in_test = Variable(in_test) X_pred = net(in_test).data.numpy() if i == 0: in_all = in_test.data.numpy() out_all = X_pred else: in_all = np.append(in_all, in_test.data.numpy(), axis=0) out_all = np.append(out_all, X_pred, axis=0) #print ("Shape in_all: ", in_all.shape) #print ("Shape out_all: ", out_all.shape) scores = p1b1.evaluate_autoencoder(in_all, out_all) print('Evaluation on test data:', scores) diff = in_all - out_all plt.hist(diff.ravel(), bins='auto') plt.title("Histogram of Errors with 'auto' bins") plt.savefig('histogram_mx.pdf')
def main(): # Get command-line parameters parser = get_p1b1_parser() args = parser.parse_args() #print('Args:', args) # Get parameters from configuration file fileParameters = p1b1.read_config_file(args.config_file) #print ('Params:', fileParameters) # Consolidate parameter set. Command-line parameters overwrite file configuration gParameters = p1_common.args_overwrite_config(args, fileParameters) print ('Params:', gParameters) # Construct extension to save model ext = p1b1.extension_from_parameters(gParameters, '.mx') logfile = args.logfile if args.logfile else args.save+ext+'.log' p1b1.logger.info('Params: {}'.format(gParameters)) # Get default parameters for initialization and optimizer functions kerasDefaults = p1_common.keras_default_config() seed = gParameters['rng_seed'] # Load dataset X_train, X_val, X_test = p1b1.load_data(gParameters, seed) print ("Shape X_train: ", X_train.shape) print ("Shape X_val: ", X_val.shape) print ("Shape X_test: ", X_test.shape) print ("Range X_train --> Min: ", np.min(X_train), ", max: ", np.max(X_train)) print ("Range X_val --> Min: ", np.min(X_val), ", max: ", np.max(X_val)) print ("Range X_test --> Min: ", np.min(X_test), ", max: ", np.max(X_test)) # Set input and target to X_train train_iter = mx.io.NDArrayIter(X_train, X_train, gParameters['batch_size'], shuffle=gParameters['shuffle']) val_iter = mx.io.NDArrayIter(X_val, X_val, gParameters['batch_size']) test_iter = mx.io.NDArrayIter(X_test, X_test, gParameters['batch_size']) net = mx.sym.Variable('data') out = mx.sym.Variable('softmax_label') input_dim = X_train.shape[1] output_dim = input_dim # Initialize weights and learning rule initializer_weights = p1_common_mxnet.build_initializer(gParameters['initialization'], kerasDefaults) initializer_bias = p1_common_mxnet.build_initializer('constant', kerasDefaults, 0.) init = mx.initializer.Mixed(['bias', '.*'], [initializer_bias, initializer_weights]) activation = gParameters['activation'] # Define Autoencoder architecture layers = gParameters['dense'] if layers != None: if type(layers) != list: layers = list(layers) # Encoder Part for i,l in enumerate(layers): net = mx.sym.FullyConnected(data=net, num_hidden=l) net = mx.sym.Activation(data=net, act_type=activation) # Decoder Part for i,l in reversed( list(enumerate(layers)) ): if i < len(layers)-1: net = mx.sym.FullyConnected(data=net, num_hidden=l) net = mx.sym.Activation(data=net, act_type=activation) net = mx.sym.FullyConnected(data=net, num_hidden=output_dim) #net = mx.sym.Activation(data=net, act_type=activation) net = mx.symbol.LinearRegressionOutput(data=net, label=out) # Display model p1_common_mxnet.plot_network(net, 'net'+ext) # Define context devices = mx.cpu() if gParameters['gpus']: devices = [mx.gpu(i) for i in gParameters['gpus']] # Build Autoencoder model ae = mx.mod.Module(symbol=net, context=devices) # Define optimizer optimizer = p1_common_mxnet.build_optimizer(gParameters['optimizer'], gParameters['learning_rate'], kerasDefaults) # Seed random generator for training mx.random.seed(seed) freq_log = 1 ae.fit(train_iter, eval_data=val_iter, eval_metric=gParameters['loss'], optimizer=optimizer, num_epoch=gParameters['epochs'])#, #epoch_end_callback = mx.callback.Speedometer(gParameters['batch_size'], freq_log)) # model save #save_filepath = "model_ae_" + ext #ae.save(save_filepath) # Evalute model on test set X_pred = ae.predict(test_iter).asnumpy() #print ("Shape X_pred: ", X_pred.shape) scores = p1b1.evaluate_autoencoder(X_pred, X_test) print('Evaluation on test data:', scores) diff = X_pred - X_test plt.hist(diff.ravel(), bins='auto') plt.title("Histogram of Errors with 'auto' bins") plt.savefig('histogram_mx.png')