def plotCloudImage(self): """Generate some additional information and plots about the cloud image, if desired.""" from pImagePlots import PImagePlots import pylab im = PImagePlots() im.setImage(self.cloudimage) im.showImage(copy=True) im.hanningFilter() im.calcAll() im.showPsd2d() im.showAcovf2d() im.showAcovf1d() im.showSf(linear=True) #pylab.show() return
im = PImagePlots(shift=True, nx=imsize, ny=imsize) im.makeImageFromSf(sfx=xr, sf=SF) im.showAcovf1d() im.showPsd2dI() # Trim image to desired final size trim = round((imsize - final_imsize)/2.0) print 'Trimming about %d pixels from each side' %(trim) image = im.imageI[trim:trim+final_imsize, trim:trim+final_imsize] image = rescaleImage(image.real, sigma_goal, kappa) imsize = len(image) pixscale = pixscale rad_fov = imsize/2.0*pixscale print 'Image After Trimming: Rad_fov', rad_fov, 'Imsize', imsize, 'Pixscale', pixscale, 'deg/pix', '(', pixscale*60.*60., 'arcsec/pix)' im.setImage(image.real) imageStats(im.image) im.showImage(copy=True) im.hanningFilter() im.calcAll() im.showPsd2d() im.showAcovf2d() im.showAcovf1d(comparison=im) # And also try to make an image with the same (final) pixel scale, but that will be created (first) # larger and then scaled down, to avoid introducing artifacts from the ACovF1d being truncated. final_imsize = 1500 # pixels desired in final image final_rad_fov = 1.75*numpy.sqrt(2) # degrees final_pixscale = 2*final_rad_fov / float(final_imsize) # Start with larger image pixscale = final_pixscale rad_fov = final_rad_fov*2. imsize = int(2*rad_fov / pixscale)
im.invertPsd2d(usePhasespec=False) #im.invertPsd2d(useI=True) # Start here to invert from FFT (useI = False, and will get perfect reconstruction). im.invertFft(useI=True) # Use im2 to recalculate 1d PSD/ACovF starting from the reconstructed image, without altering the original. im2 = PImagePlots() im2.setImage(im.imageI.real, copy=True) im2.calcAll(min_dr=1.0, min_npix=2) im2.plotMore() # Now start plotting things, in comparison. clims = im.showImage() #print clims im2.showImage(clims=clims) im2.showImage() im.showFft(clims=clims) im2.showFft(clims=clims) im.showPsd2d() im2.showPsd2d() im.showPhases() im2.showPhases() im.showAcovf2d() im2.showAcovf2d(imag=False) im.showPsd1d(comparison=im2) im.showAcovf1d(comparison=im2) im.showSf(linear=True, comparison=im2) pylab.show() exit()
def clouds(): """Read an example of the french group's cloud generation.""" # oldCloud.npy and newCloud.npy are images of size 240x240 that cover a fov of 4.0 deg # (if cloud generation code is understood correctly). # old clouds oldClouds = numpy.load('oldCloud.npy') fov = 4.0 #rad_fov = 2.0 nx = len(oldClouds) pixscale = fov / float(nx) im = PImagePlots(shift=True) im.setImage(oldClouds) im.showImage() pylab.savefig('clouds_oldimage.%s' %(figformat), format='%s' %(figformat)) #im.hanningFilter() im.calcAll(min_npix=2, min_dr=1) im.plotMore() pylab.savefig('clouds_old.%s' %(figformat), format='%s' %(figformat)) # new clouds newClouds = numpy.load('newCloud.npy') im2 = PImagePlots(shift=True) im2.setImage(newClouds) im2.showImage() pylab.savefig('clouds_newimage.%s' %(figformat), format='%s' %(figformat)) #im2.hanningFilter() im2.calcAll(min_npix=2, min_dr=1) im2.plotMore() pylab.savefig('clouds_new.%s' %(figformat), format='%s' %(figformat)) # compare structure functions # translate x axis from pixels to degrees .. 240 pix = 4.0 deg (?) im.sfx = im.sfx *pixscale im2.sfx = im2.sfx *pixscale # and scale SF's to just run between 0 and 1 (because of loss of amplitude info with random phases) im.sf = im.sf / im.sf.max() im2.sf = im2.sf / im2.sf.max() legendlabels = ['Old clouds (scaled SF)', 'New clouds (scaled SF)'] im.showSf(comparison=im2, legendlabels=legendlabels, linear=True) pylab.xlim(0, fov/2.0) pylab.ylim(0, 1.2) pylab.title('Structure Function') pylab.xlabel('Degrees') pylab.savefig('clouds_sf.%s' %(figformat), format='%s' %(figformat)) # look at phase spectrum pylab.figure() n, b, p = pylab.hist(im.phasespec.flatten(), bins=75, range=[-numpy.pi, numpy.pi], alpha=0.2, label='Old clouds phases') n, b, p = pylab.hist(im2.phasespec.flatten(), bins=b, range=[-numpy.pi, numpy.pi], alpha=0.2, label='New clouds phases') pylab.legend(fancybox=True, fontsize='smaller') pylab.savefig('clouds_phasehist.%s' %(figformat), format='%s' %(figformat)) # the phase spectrum seems to be flatly distributed between -pi and pi pylab.figure() pylab.subplot(121) pylab.title('Old clouds') pylab.imshow(im.phasespec, origin='lower') pylab.colorbar(shrink=0.6) pylab.subplot(122) pylab.title('New clouds') pylab.imshow(im2.phasespec, origin='lower') pylab.colorbar(shrink=0.6) pylab.suptitle('Phase spectrum') pylab.savefig('clouds_phasespec.%s' %(figformat), format='%s' %(figformat)) pylab.close() return