示例#1
0
 def __init__(self,
              A_st=None,
              atoms=None,
              symmetrynumber=None,
              inertia=None,
              geometry=None,
              vib_wavenumbers=None,
              potentialenergy=None,
              **kwargs):
     super().__init__(atoms=atoms,
                      symmetrynumber=symmetrynumber,
                      geometry=geometry,
                      vib_wavenumbers=vib_wavenumbers,
                      potentialenergy=potentialenergy,
                      **kwargs)
     self.A_st = A_st
     self.atoms = atoms
     self.geometry = geometry
     self.symmetrynumber = symmetrynumber
     self.inertia = inertia
     self.etotal = potentialenergy
     self.vib_energies = c.wavenumber_to_energy(np.array(vib_wavenumbers))
     self.theta = np.array(self.vib_energies) / c.kb('eV/K')
     self.zpe = sum(np.array(self.vib_energies)/2.) *\
         c.convert_unit(from_='eV', to='kcal')*c.Na
     if np.sum(self.vib_energies) != 0:
         self.q_vib = np.product(
             np.divide(1, (1 - np.exp(-self.theta / c.T0('K')))))
     if self.phase == 'G':
         if self.inertia is not None:
             self.I3 = self.inertia
         else:
             self.I3 = atoms.get_moments_of_inertia() *\
                     c.convert_unit(from_='A2', to='m2') *\
                     c.convert_unit(from_='amu', to='kg')
         self.T_I = c.h('J s')**2 / (8 * np.pi**2 * c.kb('J/K'))
     if self.phase == 'G':
         Irot = np.max(self.I3)
         if self.geometry == 'nonlinear':
             self.q_rot = np.sqrt(np.pi*Irot)/self.symmetrynumber *\
                                 (c.T0('K')/self.T_I)**(3./2.)
         else:
             self.q_rot = (c.T0('K') * Irot /
                           self.symmetrynumber) / self.T_I
     else:
         self.q_rot = 0.
     if self.A_st is not None:
         self.MW = mw(self.elements) * c.convert_unit(from_='g',
                                                      to='kg') / c.Na
         self.q_trans2D = self.A_st * (2 * np.pi * self.MW * c.kb('J/K') *
                                       c.T0('K')) / c.h('J s')**2
示例#2
0
    def get_SoR(self, T, P=c.P0('bar')):
        """Calculates the dimensionless entropy

        :math:`\\frac{S^{trans}}{R}=1+\\frac{n_{degrees}}{2}+\\log\\bigg(\\big(
        \\frac{2\\pi mk_bT}{h^2})^\\frac{n_{degrees}}{2}\\frac{RT}{PN_a}\\bigg)`

        Parameters
        ----------
            T : float
                Temperature in K
            P : float, optional
                Pressure (bar) or pressure-like quantity.
                Default is atmospheric pressure

        Returns
        -------
            SoR_trans : float
                Translational dimensionless entropy
        """
        V = self.get_V(T=T, P=P)
        unit_mass = self.molecular_weight *\
            c.convert_unit(from_='g', to='kg')/c.Na
        return 1. + float(self.n_degrees)/2. \
            + np.log((2.*np.pi*unit_mass*c.kb('J/K')*T/c.h('J s')**2)
                     ** (float(self.n_degrees)/2.)*V/c.Na)
示例#3
0
    def get_q(self, T, ignore_q_elec=True):
        """Calculates the partition function

        :math:`q^{elec}=1 + \\omega_i \\exp\\bigg(-\\frac{E}{RT}\\bigg)`

        Parameters
        ----------
            T : float
                Temperature in K
            ignore_q_elec : bool, optional
                Ignore contribution of electronic mode to partition function
                . Often necessary since DFT's value for potentialenergy is
                very negative causing q_elec to go to infinity. Default is True
        Returns
        -------
            q_elec : float
                Electronic partition function
        """
        if ignore_q_elec:
            return 1.
        else:
            if self.D0 is not None:
                Epsilon = self.D0/c.kb('eV/K')/T
            else:
                Epsilon = self.get_UoRT(T=T)
            return self._degeneracy*(1 + np.exp(-Epsilon))
示例#4
0
文件: vib.py 项目: himaghna/pMuTT
    def get_ZPE(self):
        """Calculates the zero point energy

        :math:`u^0_E=u+\\frac{3}{2}\\Theta_E k_B`

        Returns
        -------
            ZPE : float
                Zero point energy in eV
        """
        return self.interaction_energy \
            + 1.5*self.einstein_temperature*c.kb('eV/K')
示例#5
0
文件: vib.py 项目: himaghna/pMuTT
    def get_ZPE(self):
        """Calculates the zero point energy

        :math:`ZPE=\\frac{1}{2}k_b\\sum_i \\Theta_{V,i}`

        Returns
        -------
            zpe : float
                Zero point energy in eV
        """
        valid_wavenumbers = _get_valid_vib_wavenumbers(
            wavenumbers=self.vib_wavenumbers,
            substitute=self.imaginary_substitute)
        vib_temperatures = c.wavenumber_to_temp(valid_wavenumbers)
        return 0.5 * c.kb('eV/K') * np.sum(vib_temperatures)
示例#6
0
    def get_UoRT(self, T):
        """Calculates the imensionless internal energy

        :math:`\\frac{U^{elec}}{RT}=\\frac{E}{RT}`

        Parameters
        ----------
            T : float
                Temperature in K
        Returns
        -------
            UoRT_elec : float
                Electronic dimensionless internal energy
        """
        return (self.potentialenergy)/c.kb('eV/K')/T
示例#7
0
文件: vib.py 项目: himaghna/pMuTT
    def _get_SoR_RRHO(self, T, vib_inertia):
        """Calculates the dimensionless RRHO contribution to entropy

        Parameters
        ----------
            T : float
                Temperature in K
            vib_inertia : float
                Vibrational inertia in kg m2
        Returns
        -------
            SoR_RHHO : float
                Dimensionless entropy of Rigid Rotor Harmonic Oscillator
        """
        return 0.5 + np.log(
            (8. * np.pi**3 * vib_inertia * c.kb('J/K') * T / c.h('J s')**2)**
            0.5)
示例#8
0
文件: vib.py 项目: himaghna/pMuTT
    def get_UoRT(self, T):
        """Calculates the dimensionless internal energy

        :math:`\\frac{U^{vib}}{RT}=\\frac{u^0_E}{k_BT}+3\\frac{\\Theta_E}{T}
        \\bigg(\\frac{\\exp(-\\frac{\\Theta_E}{T})}{1-\\exp(-\\frac{\\Theta_E}
        {T})}\\bigg)`

        Parameters
        ----------
            T : float
                Temperature in K
        Returns
        -------
            UoRT_vib : float
                Vibrational dimensionless internal energy
        """
        theta_E = self.einstein_temperature
        return self.get_ZPE()/c.kb('eV/K')/T \
            + 3.*theta_E/T*np.exp(-theta_E/T)/(1. - np.exp(-theta_E/T))
示例#9
0
文件: vib.py 项目: himaghna/pMuTT
    def get_q(self, T):
        """Calculates the partition function

        :math:`q^{vib}=\\exp\\bigg({\\frac{-u}{k_BT}}\\bigg)\\bigg(\\frac{
        \\exp(-\\frac{\\Theta_E}{2T})}{1-\\exp(\\frac{-\\Theta_E}{T})}\\bigg)`

        Parameters
        ----------
            T : float
                Temperature in K
        Returns
        -------
            q_vib : float
                Vibrational partition function
        """
        u = self.interaction_energy
        theta_E = self.einstein_temperature
        return np.exp(-u/c.kb('eV/K')/T) \
            * (np.exp(-theta_E/2./T)/(1. - np.exp(-theta_E/T)))
示例#10
0
文件: vib.py 项目: himaghna/pMuTT
    def get_ZPE(self):
        """Calculates the zero point energy

        :math:`ZPE=\\frac{1}{2}k_b\\sum_i \\omega_i\\Theta_{V,i}`

        Returns
        -------
            zpe : float
                Zero point energy in eV
        """
        zpe = []
        valid_wavenumbers = _get_valid_vib_wavenumbers(
            wavenumbers=self.vib_wavenumbers,
            substitute=self.imaginary_substitute)
        vib_temperatures = c.wavenumber_to_temp(valid_wavenumbers)
        scaled_wavenumbers = self._get_scaled_wavenumber(valid_wavenumbers)

        for theta_i, w_i in zip(vib_temperatures, scaled_wavenumbers):
            zpe = 0.5 * c.kb('eV/K') * theta_i * w_i
        return np.sum(zpe)
示例#11
0
    def get_q(self, T, P=c.P0('bar')):
        """Calculates the partition function

        :math:`q_{trans} = \\bigg(\\frac{2\\pi \\sum_{i}^{atoms}m_ikT}{h^2}
        \\bigg)^\\frac {n_{degrees}} {2}V`

        Parameters
        ----------
            T : float
                Temperature in K
            P : float, optional
                Pressure (bar) or pressure-like quantity.
                Default is atmospheric pressure
        Returns
        -------
            q_trans : float
                Translational partition function
        """
        V = self.get_V(T=T, P=P)
        unit_mass = self.molecular_weight *\
            c.convert_unit(from_='g', to='kg')/c.Na
        return V*(2*np.pi*c.kb('J/K')*T*unit_mass/c.h('J s')**2) \
            ** (float(self.n_degrees)/2.)
示例#12
0
 def test_kb(self):
     self.assertEqual(c.kb('J/K'), 1.38064852e-23)
     with self.assertRaises(KeyError):
         c.kb('arbitrary unit')