def __init__(self, df1=1, df2=1, lmbda=0): d1 = NoncentralChiSquareDistr(df1, lmbda) / df1 d2 = ChiSquareDistr(df2) / df2 super(NoncentralFDistr, self).__init__(d1, d2) self.df1 = df1 self.df2 = df2 self.lmbda = lmbda
def __init__(self, alpha=1, beta=1, lmbda=0): d = 1 + ChiSquareDistr(2.0 * beta) / NoncentralChiSquareDistr( 2 * alpha, lmbda) super(NoncentralBetaDistr, self).__init__(d) self.alpha = alpha self.beta = beta self.lmbda = lmbda
def __init__(self, df, lmbda=0): assert df >= 1 d1 = NormalDistr(sqrt(lmbda))**2 if df > 1: d2 = ChiSquareDistr(df - 1) else: d2 = ZeroDistr() super(NoncentralChiSquareDistr, self).__init__(d1, d2) self.df = df self.lmbda = lmbda
def __new__(cls, df, lmbda=0): assert df >= 1 d1 = NormalDistr(sqrt(lmbda))**2 if df == 1: return d1 d2 = ChiSquareDistr(df - 1) ncc2 = super(NoncentralChiSquareDistr, cls).__new__(cls, d1, d2) super(NoncentralChiSquareDistr, ncc2).__init__(d1, d2) ncc2.df = df ncc2.lmbda = lmbda return ncc2
def __init__(self, df=2, mu=0): d1 = NormalDistr(mu, 1) d2 = distr_sqrt(ChiSquareDistr(df) / df) super(NoncentralTDistr, self).__init__(d1, d2) self.df = df self.mu = mu