示例#1
0
def train_transforms(sample, image_shape, jittering, **kwargs):
    """
    Training data augmentation transformations

    Parameters
    ----------
    sample : dict
        Sample to be augmented
    image_shape : tuple (height, width)
        Image dimension to reshape
    jittering : tuple (brightness, contrast, saturation, hue)
        Color jittering parameters

    Returns
    -------
    sample : dict
        Augmented sample
    """
    # (orig_w, orig_h) = sample['rgb'].size
    # (h, w) = shape
    # factor = w/orig_w
    # h=h*factor

    if len(image_shape) > 0:
        sample = resize_sample(sample, image_shape)
    sample = duplicate_sample(sample)
    if len(jittering) > 0:
        sample = colorjitter_sample(sample, jittering)
    if "max_roll_angle" in kwargs:
        sample = rotate_sample(sample, degrees=kwargs["max_roll_angle"])
    if "random_center_crop" in kwargs:
        if kwargs["random_center_crop"]:
            sample = random_center_crop_sample(sample)
    sample = to_tensor_sample(sample)
    return sample
示例#2
0
def train_transforms(sample, image_shape, jittering):
    """
    Training data augmentation transformations

    Parameters
    ----------
    sample : dict
        Sample to be augmented
    image_shape : tuple (height, width)
        Image dimension to reshape
    jittering : tuple (brightness, contrast, saturation, hue)
        Color jittering parameters

    Returns
    -------
    sample : dict
        Augmented sample
    """
    if len(image_shape) > 0:
        sample = resize_sample(sample, image_shape)
    sample = duplicate_sample(sample)
    if len(jittering) > 0:
        sample = colorjitter_sample(sample, jittering)
    sample = to_tensor_sample(sample)
    return sample
示例#3
0
def train_transforms(sample, image_shape, jittering, crop_train_borders):
    """
    Training data augmentation transformations

    Parameters
    ----------
    sample : dict
        Sample to be augmented
    image_shape : tuple (height, width)
        Image dimension to reshape
    jittering : tuple (brightness, contrast, saturation, hue)
        Color jittering parameters
    crop_train_borders : tuple (left, top, right, down)
        Border for cropping

    Returns
    -------
    sample : dict
        Augmented sample
    """
    if len(crop_train_borders) > 0:
        borders = parse_crop_borders(crop_train_borders,
                                     sample['rgb'].size[::-1])
        sample = crop_sample(sample, borders)
    if len(image_shape) > 0:
        sample = resize_sample(sample, image_shape)
    sample = duplicate_sample(sample)
    if len(jittering) > 0:
        sample = colorjitter_sample(sample, jittering)
    sample = to_tensor_sample(sample)
    return sample