示例#1
0
    def __call__(self, subgraph, placements, n_keys_map, routing_paths):
        """
        Allocates routing information to the partitioned edges in a\
        partitioned graph

        :param subgraph: The partitioned graph to allocate the routing info for
        :type subgraph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :param placements: The placements of the subvertices
        :type placements:\
                    :py:class:`pacman.model.placements.placements.Placements`
        :param n_keys_map: A map between the partitioned edges and the number\
                    of keys required by the edges
        :type n_keys_map:\
                    :py:class:`pacman.model.routing_info.abstract_partitioned_edge_n_keys_map.AbstractPartitionedEdgeNKeysMap`
        :param routing_paths: the paths each partitioned edge takes to get\
                from source to destination.
        :type routing_paths:
            :py:class:`pacman.model.routing_paths.multicast_routing_paths.MulticastRoutingPaths
        :return: The routing information
        :rtype: :py:class:`pacman.model.routing_info.routing_info.RoutingInfo`,
                :py:class:`pacman.model.routing_tables.multicast_routing_table.MulticastRoutingTable
        :raise pacman.exceptions.PacmanRouteInfoAllocationException: If\
                   something goes wrong with the allocation
        """

        # check that this algorithm supports the constraints put onto the
        # partitioned_edges
        supported_constraints = []
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=subgraph.subedges,
            supported_constraints=supported_constraints,
            abstract_constraint_type=AbstractKeyAllocatorConstraint)

        # take each subedge and create keys from its placement
        progress_bar = ProgressBar(len(subgraph.subedges),
                                   "Allocating routing keys")
        routing_infos = RoutingInfo()
        routing_tables = MulticastRoutingTables()

        for subedge in subgraph.subedges:
            destination = subedge.post_subvertex
            placement = placements.get_placement_of_subvertex(destination)
            key = self._get_key_from_placement(placement)
            keys_and_masks = list(
                [BaseKeyAndMask(base_key=key, mask=self.MASK)])
            n_keys = n_keys_map.n_keys_for_partitioned_edge(subedge)
            if n_keys > self.MAX_KEYS_SUPPORTED:
                raise exceptions.PacmanConfigurationException(
                    "Only edges which require less than {} keys are supported".
                    format(self.MAX_KEYS_SUPPORTED))

            partition_info = PartitionRoutingInfo(keys_and_masks, subedge)
            routing_infos.add_partition_info(partition_info)

            progress_bar.update()
        progress_bar.end()

        return {
            'routing_infos': routing_infos,
            'routing_tables': routing_tables
        }
    def test_write_synaptic_matrix_and_master_population_table(self):
        MockSimulator.setup()

        default_config_paths = os.path.join(
            os.path.dirname(abstract_spinnaker_common.__file__),
            AbstractSpiNNakerCommon.CONFIG_FILE_NAME)

        config = conf_loader.load_config(
            AbstractSpiNNakerCommon.CONFIG_FILE_NAME, default_config_paths)
        config.set("Simulation", "one_to_one_connection_dtcm_max_bytes", 40)

        machine_time_step = 1000.0

        pre_app_vertex = SimpleApplicationVertex(10)
        pre_vertex = SimpleMachineVertex(resources=None)
        pre_vertex_slice = Slice(0, 9)
        post_app_vertex = SimpleApplicationVertex(10)
        post_vertex = SimpleMachineVertex(resources=None)
        post_vertex_slice = Slice(0, 9)
        post_slice_index = 0
        one_to_one_connector_1 = OneToOneConnector(None)
        one_to_one_connector_1.set_projection_information(
            pre_app_vertex, post_app_vertex, None, machine_time_step)
        one_to_one_connector_1.set_weights_and_delays(1.5, 1.0)
        one_to_one_connector_2 = OneToOneConnector(None)
        one_to_one_connector_2.set_projection_information(
            pre_app_vertex, post_app_vertex, None, machine_time_step)
        one_to_one_connector_2.set_weights_and_delays(2.5, 2.0)
        all_to_all_connector = AllToAllConnector(None)
        all_to_all_connector.set_projection_information(
            pre_app_vertex, post_app_vertex, None, machine_time_step)
        all_to_all_connector.set_weights_and_delays(4.5, 4.0)
        direct_synapse_information_1 = SynapseInformation(
            one_to_one_connector_1, SynapseDynamicsStatic(), 0)
        direct_synapse_information_2 = SynapseInformation(
            one_to_one_connector_2, SynapseDynamicsStatic(), 1)
        all_to_all_synapse_information = SynapseInformation(
            all_to_all_connector, SynapseDynamicsStatic(), 0)
        app_edge = ProjectionApplicationEdge(
            pre_app_vertex, post_app_vertex, direct_synapse_information_1)
        app_edge.add_synapse_information(direct_synapse_information_2)
        app_edge.add_synapse_information(all_to_all_synapse_information)
        machine_edge = ProjectionMachineEdge(
            app_edge.synapse_information, pre_vertex, post_vertex)
        partition_name = "TestPartition"

        graph = MachineGraph("Test")
        graph.add_vertex(pre_vertex)
        graph.add_vertex(post_vertex)
        graph.add_edge(machine_edge, partition_name)

        graph_mapper = GraphMapper()
        graph_mapper.add_vertex_mapping(
            pre_vertex, pre_vertex_slice, pre_app_vertex)
        graph_mapper.add_vertex_mapping(
            post_vertex, post_vertex_slice, post_app_vertex)
        graph_mapper.add_edge_mapping(machine_edge, app_edge)

        weight_scales = [4096.0, 4096.0]

        key = 0
        routing_info = RoutingInfo()
        routing_info.add_partition_info(PartitionRoutingInfo(
            [BaseKeyAndMask(key, 0xFFFFFFF0)],
            graph.get_outgoing_edge_partition_starting_at_vertex(
                pre_vertex, partition_name)))

        temp_spec = tempfile.mktemp()
        spec_writer = FileDataWriter(temp_spec)
        spec = DataSpecificationGenerator(spec_writer, None)
        master_pop_sz = 1000
        master_pop_region = 0
        all_syn_block_sz = 2000
        synapse_region = 1
        spec.reserve_memory_region(master_pop_region, master_pop_sz)
        spec.reserve_memory_region(synapse_region, all_syn_block_sz)

        synapse_type = MockSynapseType()

        synaptic_manager = SynapticManager(
            synapse_type=synapse_type, ring_buffer_sigma=5.0,
            spikes_per_second=100.0, config=config)
        synaptic_manager._write_synaptic_matrix_and_master_population_table(
            spec, [post_vertex_slice], post_slice_index, post_vertex,
            post_vertex_slice, all_syn_block_sz, weight_scales,
            master_pop_region, synapse_region, routing_info, graph_mapper,
            graph, machine_time_step)
        spec.end_specification()
        spec_writer.close()

        spec_reader = FileDataReader(temp_spec)
        executor = DataSpecificationExecutor(
            spec_reader, master_pop_sz + all_syn_block_sz)
        executor.execute()

        master_pop_table = executor.get_region(0)
        synaptic_matrix = executor.get_region(1)

        all_data = bytearray()
        all_data.extend(master_pop_table.region_data[
            :master_pop_table.max_write_pointer])
        all_data.extend(synaptic_matrix.region_data[
            :synaptic_matrix.max_write_pointer])
        master_pop_table_address = 0
        synaptic_matrix_address = master_pop_table.max_write_pointer
        direct_synapses_address = struct.unpack_from(
            "<I", synaptic_matrix.region_data)[0]
        direct_synapses_address += synaptic_matrix_address + 8
        indirect_synapses_address = synaptic_matrix_address + 4
        placement = Placement(None, 0, 0, 1)
        transceiver = MockTransceiverRawData(all_data)

        # Get the master population table details
        items = synaptic_manager._poptable_type\
            .extract_synaptic_matrix_data_location(
                key, master_pop_table_address, transceiver,
                placement.x, placement.y)

        # The first entry should be direct, but the rest should be indirect;
        # the second is potentially direct, but has been restricted by the
        # restriction on the size of the direct matrix
        assert len(items) == 3

        # TODO: This has been changed because direct matrices are disabled!
        assert not items[0][2]
        assert not items[1][2]
        assert not items[2][2]

        data_1, row_len_1 = synaptic_manager._retrieve_synaptic_block(
            transceiver=transceiver, placement=placement,
            master_pop_table_address=master_pop_table_address,
            indirect_synapses_address=indirect_synapses_address,
            direct_synapses_address=direct_synapses_address, key=key,
            n_rows=pre_vertex_slice.n_atoms, index=0,
            using_extra_monitor_cores=False)
        connections_1 = synaptic_manager._synapse_io.read_synapses(
            direct_synapse_information_1, pre_vertex_slice, post_vertex_slice,
            row_len_1, 0, 2, weight_scales, data_1, None,
            app_edge.n_delay_stages, machine_time_step)

        # The first matrix is a 1-1 matrix, so row length is 1
        assert row_len_1 == 1

        # Check that all the connections have the right weight and delay
        assert len(connections_1) == post_vertex_slice.n_atoms
        assert all([conn["weight"] == 1.5 for conn in connections_1])
        assert all([conn["delay"] == 1.0 for conn in connections_1])

        data_2, row_len_2 = synaptic_manager._retrieve_synaptic_block(
            transceiver=transceiver, placement=placement,
            master_pop_table_address=master_pop_table_address,
            indirect_synapses_address=indirect_synapses_address,
            direct_synapses_address=direct_synapses_address, key=key,
            n_rows=pre_vertex_slice.n_atoms, index=1,
            using_extra_monitor_cores=False)
        connections_2 = synaptic_manager._synapse_io.read_synapses(
            direct_synapse_information_2, pre_vertex_slice, post_vertex_slice,
            row_len_2, 0, 2, weight_scales, data_2, None,
            app_edge.n_delay_stages, machine_time_step)

        # The second matrix is a 1-1 matrix, so row length is 1
        assert row_len_2 == 1

        # Check that all the connections have the right weight and delay
        assert len(connections_2) == post_vertex_slice.n_atoms
        assert all([conn["weight"] == 2.5 for conn in connections_2])
        assert all([conn["delay"] == 2.0 for conn in connections_2])

        data_3, row_len_3 = synaptic_manager._retrieve_synaptic_block(
            transceiver=transceiver, placement=placement,
            master_pop_table_address=master_pop_table_address,
            indirect_synapses_address=indirect_synapses_address,
            direct_synapses_address=direct_synapses_address, key=key,
            n_rows=pre_vertex_slice.n_atoms, index=2,
            using_extra_monitor_cores=False)
        connections_3 = synaptic_manager._synapse_io.read_synapses(
            all_to_all_synapse_information, pre_vertex_slice,
            post_vertex_slice, row_len_3, 0, 2, weight_scales, data_3, None,
            app_edge.n_delay_stages, machine_time_step)

        # The third matrix is an all-to-all matrix, so length is n_atoms
        assert row_len_3 == post_vertex_slice.n_atoms

        # Check that all the connections have the right weight and delay
        assert len(connections_3) == \
            post_vertex_slice.n_atoms * pre_vertex_slice.n_atoms
        assert all([conn["weight"] == 4.5 for conn in connections_3])
        assert all([conn["delay"] == 4.0 for conn in connections_3])
示例#3
0
    def __call__(self, partitioned_graph, placements, n_keys_map):
        """
        Allocates routing information to the partitioned edges in a\
        partitioned graph

        :param partitioned_graph: The partitioned graph to allocate the \
                    outing info for
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :param placements: The placements of the subvertices
        :type placements:\
                    :py:class:`pacman.model.placements.placements.Placements`
        :param n_keys_map: A map between the partitioned edges and the number\
                    of keys required by the edges
        :type n_keys_map:\
                    :py:class:`pacman.model.routing_info.abstract_partitioned_edge_n_keys_map.AbstractPartitionedEdgeNKeysMap`
        :return: The routing information
        :rtype: :py:class:`pacman.model.routing_info.routing_info.RoutingInfo`,
                :py:class:`pacman.model.routing_tables.multicast_routing_table.MulticastRoutingTable
        :raise pacman.exceptions.PacmanRouteInfoAllocationException: If\
                   something goes wrong with the allocation
        """

        # check that this algorithm supports the constraints put onto the
        # partitioned_edges
        supported_constraints = [KeyAllocatorContiguousRangeContraint]
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.partitions,
            supported_constraints=supported_constraints,
            abstract_constraint_type=AbstractKeyAllocatorConstraint)

        # take each subedge and create keys from its placement
        progress_bar = ProgressBar(len(partitioned_graph.subvertices),
                                   "Allocating routing keys")
        routing_infos = RoutingInfo()
        for subvert in partitioned_graph.subvertices:
            partitions = partitioned_graph.\
                outgoing_edges_partitions_from_vertex(subvert)
            for partition in partitions.values():
                n_keys = n_keys_map.n_keys_for_partition(partition)
                if n_keys > MAX_KEYS_SUPPORTED:
                    raise PacmanRouteInfoAllocationException(
                        "This routing info allocator can only support up to {}"
                        " keys for any given subedge; cannot therefore"
                        " allocate keys to {}, which is requesting {} keys".
                        format(MAX_KEYS_SUPPORTED, partition, n_keys))
                placement = placements.get_placement_of_subvertex(subvert)
                if placement is not None:
                    key = self._get_key_from_placement(placement)
                    keys_and_masks = list(
                        [BaseKeyAndMask(base_key=key, mask=MASK)])
                    subedge_routing_info = PartitionRoutingInfo(
                        keys_and_masks, partition)
                    routing_infos.add_partition_info(subedge_routing_info)
                else:
                    raise PacmanRouteInfoAllocationException(
                        "This subvertex '{}' has no placement! this should "
                        "never occur, please fix and try again.".format(
                            subvert))

            progress_bar.update()
        progress_bar.end()

        return {'routing_infos': routing_infos}