def __call__(self, partitioned_graph, machine):
        """

        :param partitioned_graph: The partitioned_graph to measure
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :return: The size of the graph in number of chips
        :rtype: int
        """

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and allocate
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Measuring the partitioned graph")
        resource_tracker = ResourceTracker(machine)
        for subvertex in ordered_subverts:
            resource_tracker.allocate_constrained_resources(
                subvertex.resources_required, subvertex.constraints)
            progress_bar.update()
        progress_bar.end()
        return {'n_chips': len(resource_tracker.keys)}
示例#2
0
    def __call__(self, partitioned_graph, machine):
        """ Place a partitioned_graph so that each subvertex is placed on a\
                    core

        :param partitioned_graph: The partitioned_graph to place
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :return: A set of placements
        :rtype: :py:class:`pacman.model.placements.placements.Placements`
        :raise pacman.exceptions.PacmanPlaceException: If something\
                   goes wrong with the placement
        """

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        placements = Placements()
        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and generate placements
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Placing graph vertices")
        resource_tracker = ResourceTracker(machine)
        for subvertex in ordered_subverts:

            # Create and store a new placement anywhere on the board
            (x, y, p, _, _) = resource_tracker.allocate_constrained_resources(
                subvertex.resources_required, subvertex.constraints)
            placement = Placement(subvertex, x, y, p)
            placements.add_placement(placement)
            progress_bar.update()
        progress_bar.end()
        return {'placements': placements}
示例#3
0
    def __call__(self, partitioned_graph, machine):
        """ Place a partitioned_graph so that each subvertex is placed on a\
                    core

        :param partitioned_graph: The partitioned_graph to place
        :type partitioned_graph:\
                    :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph`
        :return: A set of placements
        :rtype: :py:class:`pacman.model.placements.placements.Placements`
        :raise pacman.exceptions.PacmanPlaceException: If something\
                   goes wrong with the placement
        """

        # check that the algorithm can handle the constraints
        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=partitioned_graph.subvertices,
            supported_constraints=[PlacerChipAndCoreConstraint],
            abstract_constraint_type=AbstractPlacerConstraint)

        placements = Placements()
        ordered_subverts = utility_calls.sort_objects_by_constraint_authority(
            partitioned_graph.subvertices)

        # Iterate over subvertices and generate placements
        progress_bar = ProgressBar(len(ordered_subverts),
                                   "Placing graph vertices")
        resource_tracker = ResourceTracker(machine)
        for subvertex in ordered_subverts:

            # Create and store a new placement anywhere on the board
            (x, y, p, _, _) = resource_tracker.allocate_constrained_resources(
                subvertex.resources_required, subvertex.constraints)
            placement = Placement(subvertex, x, y, p)
            placements.add_placement(placement)
            progress_bar.update()
        progress_bar.end()
        return {'placements': placements}
示例#4
0
    def __call__(self, graph, machine):

        utility_calls.check_algorithm_can_support_constraints(
            constrained_vertices=graph.vertices,
            supported_constraints=[PartitionerMaximumSizeConstraint],
            abstract_constraint_type=AbstractPartitionerConstraint)

        # start progress bar
        progress_bar = ProgressBar(len(graph.vertices),
                                   "Partitioning graph vertices")
        vertices = graph.vertices
        subgraph = PartitionedGraph(label="partitioned_graph for partitionable"
                                          "_graph {}".format(graph.label))
        graph_to_subgraph_mapper = GraphMapper(graph.label, subgraph.label)
        resource_tracker = ResourceTracker(machine)

        # Partition one vertex at a time
        for vertex in vertices:

            # Get the usage of the first atom, then assume that this
            # will be the usage of all the atoms
            requirements = vertex.get_resources_used_by_atoms(Slice(0, 1),
                                                              graph)

            # Locate the maximum resources available
            max_resources_available = \
                resource_tracker.get_maximum_constrained_resources_available(
                    vertex.constraints)

            # Find the ratio of each of the resources - if 0 is required,
            # assume the ratio is the max available
            atoms_per_sdram = self._get_ratio(
                max_resources_available.sdram.get_value(),
                requirements.sdram.get_value())
            atoms_per_dtcm = self._get_ratio(
                max_resources_available.dtcm.get_value(),
                requirements.dtcm.get_value())
            atoms_per_cpu = self._get_ratio(
                max_resources_available.cpu.get_value(),
                requirements.cpu.get_value())

            max_atom_values = [atoms_per_sdram, atoms_per_dtcm, atoms_per_cpu]

            max_atoms_constraints = utility_calls.locate_constraints_of_type(
                vertex.constraints, PartitionerMaximumSizeConstraint)
            for max_atom_constraint in max_atoms_constraints:
                max_atom_values.append(max_atom_constraint.size)

            atoms_per_core = min(max_atom_values)

            # Partition into subvertices
            counted = 0
            while counted < vertex.n_atoms:

                # Determine subvertex size
                remaining = vertex.n_atoms - counted
                if remaining > atoms_per_core:
                    alloc = atoms_per_core
                else:
                    alloc = remaining

                # Create and store new subvertex, and increment elements
                #  counted
                if counted < 0 or counted + alloc - 1 < 0:
                    raise PacmanPartitionException("Not enough resources"
                                                   " available to create"
                                                   " subvertex")

                vertex_slice = Slice(counted, counted + (alloc - 1))
                subvertex_usage = vertex.get_resources_used_by_atoms(
                    vertex_slice, graph)

                subvert = vertex.create_subvertex(
                    vertex_slice, subvertex_usage,
                    "{}:{}:{}".format(vertex.label, counted,
                                      (counted + (alloc - 1))),
                    partition_algorithm_utilities.
                    get_remaining_constraints(vertex))
                subgraph.add_subvertex(subvert)
                graph_to_subgraph_mapper.add_subvertex(
                    subvert, vertex_slice, vertex)
                counted = counted + alloc

                # update allocated resources
                resource_tracker.allocate_constrained_resources(
                    subvertex_usage, vertex.constraints)

            # update and end progress bars as needed
            progress_bar.update()
        progress_bar.end()

        partition_algorithm_utilities.generate_sub_edges(
            subgraph, graph_to_subgraph_mapper, graph)

        return {'Partitioned_graph': subgraph,
                'Graph_mapper': graph_to_subgraph_mapper}