def __call__(self, partitioned_graph, machine): """ :param partitioned_graph: The partitioned_graph to measure :type partitioned_graph:\ :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph` :return: The size of the graph in number of chips :rtype: int """ # check that the algorithm can handle the constraints utility_calls.check_algorithm_can_support_constraints( constrained_vertices=partitioned_graph.subvertices, supported_constraints=[PlacerChipAndCoreConstraint], abstract_constraint_type=AbstractPlacerConstraint) ordered_subverts = utility_calls.sort_objects_by_constraint_authority( partitioned_graph.subvertices) # Iterate over subvertices and allocate progress_bar = ProgressBar(len(ordered_subverts), "Measuring the partitioned graph") resource_tracker = ResourceTracker(machine) for subvertex in ordered_subverts: resource_tracker.allocate_constrained_resources( subvertex.resources_required, subvertex.constraints) progress_bar.update() progress_bar.end() return {'n_chips': len(resource_tracker.keys)}
def __call__(self, partitioned_graph, machine): """ Place a partitioned_graph so that each subvertex is placed on a\ core :param partitioned_graph: The partitioned_graph to place :type partitioned_graph:\ :py:class:`pacman.model.partitioned_graph.partitioned_graph.PartitionedGraph` :return: A set of placements :rtype: :py:class:`pacman.model.placements.placements.Placements` :raise pacman.exceptions.PacmanPlaceException: If something\ goes wrong with the placement """ # check that the algorithm can handle the constraints utility_calls.check_algorithm_can_support_constraints( constrained_vertices=partitioned_graph.subvertices, supported_constraints=[PlacerChipAndCoreConstraint], abstract_constraint_type=AbstractPlacerConstraint) placements = Placements() ordered_subverts = utility_calls.sort_objects_by_constraint_authority( partitioned_graph.subvertices) # Iterate over subvertices and generate placements progress_bar = ProgressBar(len(ordered_subverts), "Placing graph vertices") resource_tracker = ResourceTracker(machine) for subvertex in ordered_subverts: # Create and store a new placement anywhere on the board (x, y, p, _, _) = resource_tracker.allocate_constrained_resources( subvertex.resources_required, subvertex.constraints) placement = Placement(subvertex, x, y, p) placements.add_placement(placement) progress_bar.update() progress_bar.end() return {'placements': placements}
def __call__(self, graph, machine): utility_calls.check_algorithm_can_support_constraints( constrained_vertices=graph.vertices, supported_constraints=[PartitionerMaximumSizeConstraint], abstract_constraint_type=AbstractPartitionerConstraint) # start progress bar progress_bar = ProgressBar(len(graph.vertices), "Partitioning graph vertices") vertices = graph.vertices subgraph = PartitionedGraph(label="partitioned_graph for partitionable" "_graph {}".format(graph.label)) graph_to_subgraph_mapper = GraphMapper(graph.label, subgraph.label) resource_tracker = ResourceTracker(machine) # Partition one vertex at a time for vertex in vertices: # Get the usage of the first atom, then assume that this # will be the usage of all the atoms requirements = vertex.get_resources_used_by_atoms(Slice(0, 1), graph) # Locate the maximum resources available max_resources_available = \ resource_tracker.get_maximum_constrained_resources_available( vertex.constraints) # Find the ratio of each of the resources - if 0 is required, # assume the ratio is the max available atoms_per_sdram = self._get_ratio( max_resources_available.sdram.get_value(), requirements.sdram.get_value()) atoms_per_dtcm = self._get_ratio( max_resources_available.dtcm.get_value(), requirements.dtcm.get_value()) atoms_per_cpu = self._get_ratio( max_resources_available.cpu.get_value(), requirements.cpu.get_value()) max_atom_values = [atoms_per_sdram, atoms_per_dtcm, atoms_per_cpu] max_atoms_constraints = utility_calls.locate_constraints_of_type( vertex.constraints, PartitionerMaximumSizeConstraint) for max_atom_constraint in max_atoms_constraints: max_atom_values.append(max_atom_constraint.size) atoms_per_core = min(max_atom_values) # Partition into subvertices counted = 0 while counted < vertex.n_atoms: # Determine subvertex size remaining = vertex.n_atoms - counted if remaining > atoms_per_core: alloc = atoms_per_core else: alloc = remaining # Create and store new subvertex, and increment elements # counted if counted < 0 or counted + alloc - 1 < 0: raise PacmanPartitionException("Not enough resources" " available to create" " subvertex") vertex_slice = Slice(counted, counted + (alloc - 1)) subvertex_usage = vertex.get_resources_used_by_atoms( vertex_slice, graph) subvert = vertex.create_subvertex( vertex_slice, subvertex_usage, "{}:{}:{}".format(vertex.label, counted, (counted + (alloc - 1))), partition_algorithm_utilities. get_remaining_constraints(vertex)) subgraph.add_subvertex(subvert) graph_to_subgraph_mapper.add_subvertex( subvert, vertex_slice, vertex) counted = counted + alloc # update allocated resources resource_tracker.allocate_constrained_resources( subvertex_usage, vertex.constraints) # update and end progress bars as needed progress_bar.update() progress_bar.end() partition_algorithm_utilities.generate_sub_edges( subgraph, graph_to_subgraph_mapper, graph) return {'Partitioned_graph': subgraph, 'Graph_mapper': graph_to_subgraph_mapper}