def test_morletf(): """ Confirm consistency in morlet wavelet filtering """ # Load data data = np.load(os.path.dirname(pacpy.__file__) + '/tests/exampledata.npy') assert np.allclose(np.sum(np.abs(morletf(data, 21.5))), 40661855.060118973, atol=10**-5) assert len(morletf(data, 21.5)) == len(data)
def test_morletf(): """ Confirm consistency in morlet wavelet filtering """ # Load data data = np.load(os.path.dirname(pacpy.__file__) + "/tests/exampledata.npy") assert np.allclose(np.sum(np.abs(morletf(data, 21.5))), 40125678.7918, atol=10 ** -4)
def _morletT(x, f0s, w=3, fs=1000, s=1): """ Calculate the time-frequency representation of the signal 'x' over the frequencies in 'f0s' using morlet wavelets Parameters ---------- x : array time series f0s : array frequency axis w : float Length of the filter in terms of the number of cycles of the oscillation whose frequency is the center of the bandpass filter Fs : float Sampling rate s : float Scaling factor Returns ------- mwt : 2-D array time-frequency representation of signal x """ if w <= 0: raise ValueError( 'Number of cycles in a filter must be a positive number.') T = len(x) F = len(f0s) mwt = np.zeros([F, T], dtype=complex) for f in range(F): mwt[f] = morletf(x, f0s[f], fs=fs, w=w, s=s) return mwt
def test_morletf(): """ Confirm consistency in morlet wavelet filtering """ # Load data data = np.load(os.path.dirname(pacpy.__file__) + '/tests/exampledata.npy') assert np.allclose( np.sum(np.abs(morletf(data, 21.5))), 40125678.7918, atol=10 ** -4)