示例#1
0
def get_sessionmaker(dbpath, echo=True, autocommit=True, **kw):
    from sqlalchemy import create_engine
    from sqlalchemy.orm import sessionmaker
    path = Path(dbpath)
    engine = create_engine('sqlite:///{}'.format(dbpath),
        echo=echo, **kw) if path.is_file() else recreate('', echo=echo)
    return sessionmaker(engine, autocommit=autocommit)
示例#2
0
 def __init__(self, path, n_focal_pane=1, c_focal_pane=0):
     self.n_focal_pane = n_focal_pane
     self.c_focal_pane = c_focal_pane
     self.path = Path(path).ensure_suffix('.chan')
     self.channel = int(self.path.stem)
     self.maxppath = self.path.join_suffixes('.maxp.npy')
     self.mmappath = self.path.join_suffixes('.mmap.npy')
     self.statpath = self.path.join_suffixes('.stat.npy')
     self.metapath = self.path.join_suffixes('.meta.json')
     self.cmap = colormaps['Jet']
     self.min_val = 0
     self.max_val = 255
示例#3
0
def upgrade_sqlite(path):
    """
    for io in ScanboxIO.iter_every_io():
    print io.db_path
    upgrade_sqlite(io.db_path)
    """
    import shutil
    path = Path(path)
    Session = open_sqlite(path.str)
    meta = schema.SQLite3Base.metadata
    bind = Session.kw.get('bind')
    shutil.copy2(path.str, path.with_suffix('.backup.sqlite3').str)
    schema.fix_incremental(meta, bind)
    return Session
示例#4
0
 def make_path(self):
     now = time.strftime('%Y-%m-%dT%H-%M-%S', time.localtime())
     self.path = Path(self.basedir, now)
     try:
         os.makedirs(self.path.str)
     except Exception as e:
         raise Exception('Failed creating a base directory: ' + str(e))
示例#5
0
class DataStoreLocator(object):
    def __init__(self, path, glob='*', delta=timedelta(180)):
        self.path = Path(path).resolve()
        self.glob = glob
        self.delta = delta
        self.now = datetime.now()

    def item_is_within(self, item):
        return self.now - datetime.fromtimestamp(
            item.stat().st_ctime) < self.delta

    @property
    def items_within(self):
        return (item for item in self.path.glob(self.glob)
                if self.item_is_within(item))

    @property
    def rendered(self):
        sbxs, dirs = [], []
        for item in self.items_within:
            if item.is_dir() and not item.suffix == '.io':
                dirs.append(self.render_dir(item))
            elif item.is_file() and item.suffix == '.sbx' and item.with_suffix(
                    '.mat').is_file():
                sbxs.append(self.render_sbx(item))
        return dict(sbxs=sbxs, dirs=dirs)

    def render_dir(self, item):
        return dict(name=item.name, ctime=item.stat().st_ctime)

    def render_sbx(self, item):
        return dict(name=item.stem,
                    ctime=item.stat().st_ctime,
                    path=item.str,
                    size=item.size.str)
示例#6
0
class ScanimageRecord(object):
    """
    For `compatible_path`,
    the path should be formed like below. For example,
    '/Volumes/Data/Recordings/2P1/Dario/2015.11.20/x.151101.4/ref_p19_005.tif',
    This will be considered as,
    {whatever_basepath}/{experimenter}/{date}/{mousename}/{imagename}
    So the directory structure always will matter.
    """
    def __init__(self, compatible_path):
        self.tiff_path = Path(compatible_path).with_suffix('.tif')
        self.package_path = Path(compatible_path).with_suffix('.imported')
        self.mouse, self.date, self.user = self.tiff_path.parts[::-1][1:4]

    def toDict(self):
        return dict(user=self.user,
                    mouse=self.mouse,
                    date=self.date,
                    desc=self.desc,
                    name=self.tiff_path.stem,
                    package=self.package)

    @memoized_property
    def package(self):
        return ScanimageIO(self.package_path)

    @property
    def desc(self):
        return '{}'.format(
            SizeUnit(self.tiff_path.stat().st_size)
            # tifffile.format_size(self.tiff_path.stat().st_size)
        )
示例#7
0
class TrajectorySession(object):
    roi = None
    opt = None
    __repr__ = repr.auto_strict
    def __init__(self, path):
        self.path = Path(path).with_suffix('.session')
        self.roi = HybridNamespace.from_path(self.path.joinpath('roi'))
        self.opt = HybridNamespace.from_path(self.path.joinpath('opt'))
    def toDict(self):
        return dict(name=self.path.stem, path=self.path.str)
    @property
    def exists(self):
        return self.path.is_dir()
    def create(self):
        self.path.mkdir()
    def remove(self):
        shutil.rmtree(self.path.str)
示例#8
0
文件: db.py 项目: jzeitoun/pacu-src
def ephemeral(profile):
    from pacu.util import identity
    from pacu.core.model import fixture
    l = manager.instance('log')
    resource = identity.formattempfile('%s-db-engine-ephemeral.db')
    engine = _create_sqlite_engine(profile.uri + resource, profile.echo.bool)
    engine.__pacu_protect__ = profile.PROTECT.bool
    s = get_scoped(engine)
    if not Path(resource).is_file():
        fixture.base.setup(s)
        l.info('Tables of ephemeral db has initialized.')
    return s
示例#9
0
def import_ephys(filepath):
    """
    filepath = '/Volumes/Users/ht/dev/current/pacu/tmp/Jack/jzg1/day1/day1_000_007.txt'
    risings = import_ephys(filepath)
    """
    path = Path(filepath)
    if not path.is_file():
        raise NoRawDataError('Can not find raw data {!r}'.format(path.name))
    try:
        raw = np.genfromtxt(path.str,
                            delimiter=' ',
                            names=['TTL', 'ON'],
                            dtype='b')
        first_frame = find_nth_rising(raw['TTL'])
        data = raw[first_frame:]
        data['ON'][data['ON'] == 60] = 1
        edges = np.diff(data['TTL']) > 0
        ed_indices = np.where(edges)[0] + 1
        on_chunks = np.split(data['ON'], ed_indices)
        return np.array([chunk.any() for chunk in on_chunks])
    except Exception as e:
        raise RawDataParseError(e)
示例#10
0
class Scanbox3IO(object):
    """
    locates directory
    dir/
        meta.mat
        mmap.npy?
    """

    # has mat
    # has sbx
    # others
    def __init__(self, path):
        self.path = Path(path)  # without_suffixes '.mat', '.sbx'

    def __repr__(self):
        return '{}({!r})'.format(type(self).__name__, self.path.str)

    @property
    def matpath(self):
        return self.path.with_suffix('.mat')

    @property
    def sbxpath(self):
        return self.path.with_suffix('.sbx')

    @memoized_property
    def mat(self):
        return ZeroDimensionArrayView.from_mat(self.matpath.str)

    @memoized_property
    def sbx(self):
        return

    @memoized_property
    def mmap(self):
        pass
示例#11
0
class ScanboxSBXView(object):
    def __init__(self, path):
        self.path = Path(path)
#     def toDict(self):
#         return dict(
#             name = self.path.stem,
#             user = '******',
#             time = str(self.path.created_at),
#             host = '2P',
#             desc = '',
#             mouse = self.path.size.str,
#             package = 'package',
#         )

    def toDict(self):
        return dict(
            path=self.path.relative_to(opt.scanbox_root).str,
            time=str(self.path.created_at),
            size=self.path.size.str,
        )
示例#12
0
class ScanboxEphysView(object):
    def __init__(self, io, path):
        self.io = io
        self.path = Path(path).with_suffix('.txt')
        self.npy = self.path.with_suffix('.io').joinpath('ephys.npy')

    @property
    def trace(self):
        return np.load(self.npy.str).tolist() if self.npy.is_file() else []

    def toDict(self):
        return dict(trace=self.trace)

    def reimport(self):
        print 'Importing ephys data. This may take a few minutes.'
        np.save(self.npy.str, import_ephys(self.path))
        print 'Import Success!'
        return self.toDict()

    def remove(self):
        self.npy.unlink()
        return self.toDict()
示例#13
0
from pacu.util.path import Path
import ujson as json

raw_json = Path.here('all.json').read()
features = json.loads(raw_json)
示例#14
0
import re
import os

import time
from tifffile import TiffWriter

from pacu.util.path import Path
from pacu.core.svc.andor.handler.base import BaseHandler
from pacu.util.compat import str

re_filename = re.compile(r'^\w+$')
users_desktop = Path(os.path.expanduser('~'), 'Desktop')
ip1_datapath = Path('D:', 'data')


class WriterHandler(BaseHandler):
    def sync_name(self, member, filedir, filename):
        path = ip1_datapath.joinpath(member, filedir)
        if not path.is_dir():
            os.makedirs(path.str)
        self.tifpath = path.joinpath(filename).with_suffix('.tif')
        self.csvpath = path.joinpath(filename).with_suffix('.csv')
        return True  # self.ready()

    def check(self, filename):
        pass

    def ready(self):
        if self.tifpath.is_file() or self.csvpath.is_file():
            raise Exception(
                'Filename already exists. Please provide new one...')
示例#15
0
 def from_metadata_filename(cls, filename, meta):
     sbxpath = Path(filename).with_suffix('.sbx')
     if sbxpath.is_file():
         return cls(sbxpath.str, meta)
示例#16
0
class TrajectoryChannel(object):
    indices = slice(None)
    cmap_name = 'jet'

    def __init__(self, path):
        self.path = Path(path)

    def set_indices(self, indices):
        self.indices = indices
        return self

    @property
    def alogpath(self):
        return self.path.with_suffix('.alog.npy')

    @property
    def mmappath(self):
        return self.path.with_suffix('.mmap.npy')

    @property
    def timepath(self):
        return self.path.with_suffix('.time.npy')

    @property
    def statpath(self):
        return self.path.with_suffix('.stat.npy')

    @property
    def metapath(self):
        return self.path.with_suffix('.meta.json')

    @memoized_property
    def cmap8bit(self):
        norm = Normalize(vmin=self.stat.MIN.min() / 256,
                         vmax=self.stat.MAX.max() / 256)
        return ScalarMappable(norm=norm, cmap=plt.get_cmap(self.cmap_name))

    @cmap8bit.invalidator
    def set_cmap(self, which=0):
        name = ['jet', 'gray', 'hot', 'hsv'][int(which)]
        self.cmap_name = name

    @memoized_property
    def mmap(self):  # indices
        meta = TrajectoryChannelMeta.load(self.metapath.str)
        shape = (meta.z, meta.y, meta.x)
        return np.memmap(self.mmappath.str,
                         mode='r',
                         dtype=self.meta.dtype,
                         shape=shape)[self.indices]

    @memoized_property
    def mmap8bit(self):
        return self.mmap.view('uint8')[..., 1::2]

    @memoized_property
    def meta(self):  # indices
        meta = TrajectoryChannelMeta.load(self.metapath.str)
        if not isinstance(self.indices, slice):
            meta.z = self.indices.sum()
        return meta

    @memoized_property
    def stat(self):  # indices
        stat = np.load(self.statpath.str)
        return np.rec.fromrecords(stat, dtype=stat.dtype)[self.indices]

    @memoized_property
    def time(self):  # indices
        return np.load(self.timepath.str)[self.indices]

    @property
    def duration(self):
        return self.time[-1] - self.time[0]

    @property
    def framerate(self):
        return len(self.mmap) / self.duration

    @memoized_property
    def alog(self):  # indices
        alog = np.load(self.alogpath.str)
        return np.rec.fromrecords(alog, dtype=alog.dtype)[self.indices]

    @memoized_property
    def original_velocity(self):
        alog = np.load(self.alogpath.str)
        return np.rec.fromrecords(alog, dtype=alog.dtype).V

    def import_raw(self, tiff, timestamps, log):
        print 'Align log and timestamp...'
        log_aligned = log.align(timestamps)
        print 'Extracting metadata...'
        meta = TrajectoryChannelMeta(tiff.dtype.name, *tiff.shape)
        print 'Calculating basic statistics...'
        max = tiff.max(axis=(1, 2))
        min = tiff.min(axis=(1, 2))
        mean = tiff.mean(axis=(1, 2))
        stat = np.rec.fromarrays([max, min, mean], names='MAX, MIN, MEAN')
        mmap = np.memmap(self.mmappath.str,
                         mode='w+',
                         dtype=tiff.dtype,
                         shape=tiff.shape)
        print 'Write to disk...'
        mmap[:] = tiff[:]
        meta.save(self.metapath.str)
        np.save(self.statpath.str, stat)
        np.save(self.timepath.str, timestamps)
        np.save(self.alogpath.str, log_aligned)
        print 'Converting done!'
        return self

    def toDict(self):
        z, y, x = self.mmap.shape
        return dict(depth=z, height=y, width=x)

    def request_frame(self, index):
        return self.cmap8bit.to_rgba(self.mmap8bit[index],
                                     bytes=True).tostring()
示例#17
0
 def __init__(self, path):
     self.path = Path(path).with_suffix('.session')
     self.roi = HybridNamespace.from_path(self.path.joinpath('roi'))
     self.opt = HybridNamespace.from_path(self.path.joinpath('opt'))
示例#18
0
 def __init__(self, path):
     # wself.path = Path(str(path) + '.imported')
     if '.imported' in str(path):
         self.path = Path(path)
     else:
         self.path = Path(str(path) + '.imported')
示例#19
0
from pacu.util.path import Path
from pacu.core.scanbox import adapter

localpath = Path('/Volumes/Users/ht/tmp/pysbx-data')
localsbx = []

for path in localpath.rglob('*.mat'):
    try:
        localsbx.append(adapter.get_meta(path.str))
    except Exception as e:
        print 'Unable to read {}'.format(path.str)
    else:
        print 'Data loaded: {}'.format(path.str)


def get(req):
    data = [
        dict(uid=index, text=Path(sbx.raw.filename).stem)
        for index, sbx in enumerate(localsbx)
    ]
    return dict(data=data)
示例#20
0
 def __init__(self, io, path):
     self.io = io
     self.path = Path(path).with_suffix('.txt')
     self.npy = self.path.with_suffix('.io').joinpath('ephys.npy')
示例#21
0
 def __init__(self, path):
     self.path = Path(path).merge_or_join_suffix('.imported', on='.tif')
示例#22
0
class TrajectoryIO(object):
    session_name = 'main'

    def __init__(self, path):
        self.path = Path(path).merge_or_join_suffix('.imported', on='.tif')

    @property
    def exists(self):
        return self.path.is_dir()

    @property
    def as_record(self):
        return dict(name=self.tiffpath.name,
                    user='******',
                    time=self.datetime.strftime('%H:%M:%S'),
                    host='IOS',
                    desc=self.desc,
                    mouse='Mouse 3',
                    package=self)

    @property
    def desc(self):
        return '{}'.format(tifffile.format_size(self.tiffpath.stat().st_size))

    @property
    def datetime(self):
        return datetime.fromtimestamp(float(self.tiffpath.stem))

    @property
    def tiffpath(self):
        return self.path.with_suffix('.tif')

    def toDict(self):
        return dict(exists=self.exists,
                    path=self.path.str,
                    sessions=self.sessions)

    @memoized_property
    def tiff(self):
        tiffpath = self.path.with_suffix('.tif')
        file_size = tiffpath.lstat().st_size
        print 'Import from {}...'.format(tiffpath)
        print 'File size {:,} bytes.'.format(file_size)
        return tifffile.imread(tiffpath.str)

    def import_raw(self):
        if self.exists:
            return False
        self.create_package_path()
        print 'Looking for matching VR log file...'
        log = TrajectoryLog.query(self.datetime)
        # it can fail but never reports.
        print 'Converting channel and timestamps...'
        tss = np.fromfile(self.path.with_suffix('.csv').str,
                          sep='\n',
                          dtype='float64')
        TrajectoryChannel(self.path.joinpath('channel')).import_raw(
            self.tiff, tss, log)
        print 'Import done!'
        return self.toDict()

    def create_package_path(self):
        self.path.mkdir()
        print 'Path `{}` created.'.format(self.path.str)

    def remove_package(self):
        shutil.rmtree(self.path.str)
        return self.toDict()

    @memoized_property
    def channel(self):
        tfilter = self.session.opt.get('filter')
        if tfilter:
            if tfilter._indices is not None:
                return TrajectoryChannel(
                    self.path.joinpath('channel')).set_indices(
                        tfilter._indices)
        return TrajectoryChannel(self.path.joinpath('channel'))

    @property
    def sessions(self):
        return map(TrajectorySession, sorted(self.path.ls('*.session')))

    @memoized_property
    def session(self):
        return TrajectorySession(
            self.path.joinpath(self.session_name).with_suffix('.session'))

    @session.invalidator
    def set_session(self, session_name):
        self.session_name = session_name
        return self

    @memoized_property
    def alog(self):  # aligned log in JSON format
        return [
            dict(e=e, x=x, y=y, v=v)
            for e, x, y, v in self.channel.alog[['E', 'X', 'Y', 'V']]
        ]

    @property
    def main_response(self):
        return TrajectoryResponse(self.channel.stat.MEAN)

    def upsert_roi(self, roi_kwargs):
        return self.session.roi.upsert(ROI(**roi_kwargs))

    def upsert_filter(self, filter_kwargs):
        tfilter = TrajectoryFilter(**filter_kwargs)
        tfilter._indices = tfilter.make_indices(self.channel.original_velocity)
        rv = self.session.opt.upsert(tfilter)
        for roi in self.session.roi.values():
            roi.invalidated = True
        self.session.roi.save()
        return rv

    def make_response(self, id):
        roi = self.session.roi[id]
        extras = self.session.roi.values()
        extras.remove(roi)
        main_trace, main_mask = roi.trace(self.channel.mmap)
        neur_trace, neur_mask = roi.neuropil_trace(self.channel.mmap, extras)
        trace = main_trace - neur_trace * 0.7
        roi.invalidated = False
        roi.response = TrajectoryResponse(trace)
        return self.session.roi.upsert(roi)

    @memoized_property
    def velocity_stat(self):
        return dict(
            max=self.channel.alog.V.max(),
            mean=self.channel.alog.V.mean(),
            min=self.channel.alog.V.min(),
        )
示例#23
0
def TrajectoryIOFetcher(recording, trial, session):
    root = manager.instance('opt').trajectory_root
    path = Path(root).joinpath(recording, trial)
    return TrajectoryIO(path).set_session(session)
示例#24
0
 def __init__(self, path):
     self.path = Path(path)
示例#25
0
 def __init__(self, path):
     self.path = Path(path)  # without_suffixes '.mat', '.sbx'
示例#26
0
 def __init__(self, compatible_path):
     self.tiff_path = Path(compatible_path).with_suffix('.tif')
     self.package_path = Path(compatible_path).with_suffix('.imported')
     self.mouse, self.date, self.user = self.tiff_path.parts[::-1][1:4]
示例#27
0
from __future__ import absolute_import

import atexit

from pacu.util.path import Path
from pacu.util.newtype.incremental_hash import IncrementalHash

try:
    from ctypes import wintypes as ctypes
    from ctypes import windll as cdll
    lib_basepath = Path.here('win')
except:
    import ctypes
    from ctypes import cdll
    lib_basepath = Path.here('linux')


class CDLLDescriptor(IncrementalHash):
    dll = None

    def __get__(self, inst, type):
        return self.dll if inst else self

    def __key_set__(self, key):
        try:
            self.dll = cdll.LoadLibrary(lib_basepath.joinpath(key).str)
        except OSError as e:
            print 'CDLL OSError:', e
            self.dll = NotImplemented
        return key
示例#28
0
class ScanimageIO(object):
    session_name = 'main'
    r_value = 0.7

    def __init__(self, path):
        # wself.path = Path(str(path) + '.imported')
        if '.imported' in str(path):
            self.path = Path(path)
        else:
            self.path = Path(str(path) + '.imported')

    @classmethod
    def get_record(cls, rec_path):
        return ScanimageRecord(rec_path)

    @property
    def exists(self):
        return self.path.is_dir()

    @memoized_property
    def tiff(self):
        tiffpath = self.path.with_suffix('.tif')
        print 'Import from {}...Please allow a few minutes.'.format(
            tiffpath.name)
        return tifffile.imread(tiffpath.str)

    def import_raw(self):
        if self.exists:
            return False
        nchan = util.infer_nchannels(self.tiff)
        if nchan:
            self.create_package_path()
            self.convert_channels(nchan)
        else:
            print 'Unable to import data.'
        print 'Import done!'
        return self.toDict()

    def create_package_path(self):
        self.path.mkdir()
        print 'Path `{}` created.'.format(self.path.str)

    def remove_package(self):
        shutil.rmtree(self.path.str)
        return self.toDict()

    def convert_channels(self, nchan):
        for index in range(nchan):
            self.convert_channel(nchan, index)

    def convert_channel(self, nchan, chan):
        tiff = self.tiff[chan::nchan]
        print 'Converting channel {}...({} frames.)'.format(chan, len(tiff))
        return getattr(self, 'ch{}'.format(chan)).import_raw(tiff)

    def toDict(self):
        return dict(exists=self.exists,
                    path=self.path.str,
                    sessions=self.sessions)

    @memoized_property
    def ch0(self):
        return ScanimageChannel(self.path.joinpath('ch0'))

    @memoized_property
    def ch1(self):
        return ScanimageChannel(self.path.joinpath('ch1'))

    @memoized_property
    def channel(self):
        chan = self.session.opt.setdefault('channel', 0)
        return getattr(self, 'ch{}'.format(chan))

    @channel.invalidator
    def set_channel(self, channel):
        self.session.opt['channel'] = channel
        return self

    @property
    def nchannel(self):
        return len(list(self.path.glob('ch?.mmap.npy')))

    @property
    def channel_numbers(self):
        return list(range(self.nchannel))

    @property
    def channel_number(self):
        return self.session.opt['channel']

    colormap_index = 0
    colormaps = ['jet', 'gray', 'gist_heat', 'afmhot', 'bone']

    @property
    def has_blank_and_flicker(self):
        if self.db:
            rec = self.db.rec
            return [rec.blankOn, rec.flickerOn]
        else:
            return [None, None]

    @property
    def sfrequency(self):
        return self.db.locator.sfrequencies.current if self.db else ''
        # return self.session.opt.setdefault(#  'sfrequency', )
    @property
    def sfrequency_index(self):
        return self.sfrequencies.index(
            self.sfrequency) if self.sfrequency else 0

    @property
    def sfrequencies(self):
        return self.db.locator.sfrequencies if self.db else []

    @property
    def orientations(self):
        return self.db.orientations if self.db else []

    # @sfrequency.invalidator
    def set_sfrequency_index(self, sfreq_index):
        self.sfrequencies.set_cursor(sfreq_index)
        self.session.opt['sfrequency'] = self.sfrequencies.current
        self.session.opt.save()
        return dict(index=sfreq_index, value=self.sfrequency)

    @memoized_property
    def db(self):
        return ScanimageDBAdaptor(self.session.ed) if self.session.ed else None

    @property
    def main_response(self):
        return MainResponse.from_adaptor(self.channel.stat.MEAN, self.db)

    @property
    def sessions(self):
        return map(ScanimageSession, sorted(self.path.ls('*.session')))

    @memoized_property
    def session(self):
        return ScanimageSession(
            self.path.joinpath(self.session_name).with_suffix('.session'))

    @session.invalidator
    def set_session(self, session_name):
        self.session_name = session_name
        return self

    def upsert_roi(self, roi_kwargs):
        gp = validate_guess_params(roi_kwargs.pop('guessParams', {}))
        return self.session.roi.upsert(ROI(guess_params=gp, **roi_kwargs))

    def invalidate_rois(self):
        for roi in self.session.roi.values():
            roi.invalidated = True
            roi.blank = None
            roi.flicker = None
            roi.responses = {}

    def export_sfreqfit_data_as_mat(self, rid):
        roi = self.session.roi[rid]
        sio = StringIO()
        value = roi.sfreqfit.toDict()
        io.savemat(sio, value)
        return sio.getvalue()

    def update_responses(self, id, heavy=False):
        roi = self.session.roi[id]
        trace = self.make_trace(roi)
        if self.session.ed:
            with self.session.roi.bulk_on:
                try:
                    if self.db.locator.override_blank(True):
                        roi.blank = Orientation.from_adaptor(
                            'blank', trace, self.db)
                    if self.db.locator.override_flicker(True):
                        roi.flicker = Orientation.from_adaptor(
                            'flicker', trace, self.db)
                finally:
                    self.db.locator.override()
                for sf in self.db.locator.sfrequencies.loop():
                    response = ROIResponse.from_adaptor(roi, trace, self.db)
                    roi.responses[self.sfrequency] = response
                roi.update_with_adaptor(self.db)
                for sf, resp in roi.sorted_responses:
                    gp = roi.guess_params.get(sf) or resp.sog_initial_guess
                    print 'SoG custom guess for {}: {}'.format(sf, gp)
                    resp.update_fit_and_decay(roi, self.db, gp, heavy)
                p_value = roi.anova_all.get('p')
                if heavy:
                    if p_value < 0.01:
                        print('Computing bootstrap for preferred SF')
                        #     '{} conditions...').format(
                        #     len(self.db.orientations) * len(self.db.sfrequencies))
                        roi.update_bootstrap_for_sf(self.db)
                        peaksf = roi.sfreqfit.peak_sfreq.x
                        peak_resp = roi.responses[peaksf]
                        print 'Determine peak spatial frequency: {}'.format(
                            peaksf)
                        peak_resp.bootstrap = BootstrapResponse.from_adaptor(
                            peak_resp, self.db)
                    else:
                        print(
                            'P value is not less than 0.01. ({}) '
                            'Skip bootstrap.').format(p_value)

                roi.invalidated = False
                print 'Done updating response for ROI ' + str(roi.id)
                print ' '
                print ' '
                return self.session.roi.upsert(roi)
        else:
            response = ROIResponse.from_scanbox(roi, trace)
            roi.responses[self.sfrequency] = response
            roi.update_with_adaptor(self.db)
            roi.invalidated = False
            return self.session.roi.upsert(roi)

    sog_initial_guess = ((0, 1), (0, 1), (15, 60), (0, 0.01))

    def make_delta_trace(self, roi, trace, dx=0, dy=0):
        extras = self.session.roi.values()
        extras.remove(roi)
        main_trace, main_mask = roi.trace(trace, dx, dy)
        neur_trace, neur_mask = roi.neuropil_trace(trace, extras, dx, dy)
        return main_trace - neur_trace * self.r_value

    def make_trace(self, roi, old=False):  # checked same function
        if old:
            # print 'no centroid yet...perform old'
            extras = self.session.roi.values()
            extras.remove(roi)
            main_trace, main_mask = roi.trace(self.channel.mmap)
            neur_trace, neur_mask = roi.neuropil_trace(self.channel.mmap,
                                                       extras)
            # neuropil_mask, roi_mask = roi.trim_bounding_mask(neur_mask, main_mask)
            # roi.masks = dict(
            #     neuripil = neuropil_mask.tolist(),
            #     roi = roi_mask.tolist())
            return main_trace - neur_trace * self.r_value
        else:
            # print 'has centroid...perform new'
            vecs = roi.split_by_vectors(len(self.channel.mmap))
            traces = np.split(self.channel.mmap, vecs.index[1:])
            return np.concatenate([
                self.make_delta_trace(roi, trace, dx, dy)
                for dx, dy, trace in zip(vecs.x, vecs.y, traces)
            ])

    def export_plots(self, id):
        roi = self.session.roi[id]
        return roi.export_plots_as_zip_for_download()
示例#29
0
def get(req):
    data = [
        dict(uid=index, text=Path(sbx.raw.filename).stem)
        for index, sbx in enumerate(localsbx)
    ]
    return dict(data=data)
示例#30
0
def ScanimageIOFetcher(year, month, day, mouse, image, session):
    root = manager.instance('opt').scanimage_root
    date = '{}.{:2}.{:2}'.format(year, month, day)
    path = Path(root).joinpath(date, mouse, image)
    return ScanimageIO(path).set_session(session)