def run_mnist_2gpu(self, target_file_name, eager_mode=True):
        if not fluid.core.is_compiled_with_cuda(
        ) or fluid.core.get_cuda_device_count() == 0:
            return

        selected_gpus = get_gpus('0,1')
        cluster = None
        pod = None

        cluster, pod = get_cluster_from_args(selected_gpus)

        procs = start_local_trainers(
            cluster,
            pod,
            eager_mode=eager_mode,
            training_script=target_file_name,
            training_script_args=[])

        while True:
            alive = watch_local_trainers(procs, cluster.trainers_endpoints())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)
    def run_mnist_2cpu(self, target_file_name):

        cluster, pod = get_cluster_from_args(
            [0, 1])  #tmp use. for getting trainer_nranks()

        procs = start_local_trainers_cpu(cluster.trainers_endpoints(),
                                         training_script=target_file_name,
                                         training_script_args=[])

        while True:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())

            if not alive:
                print("Local procs complete, POD info:{}".format(pod))
                break
            time.sleep(3)