def main(): # build train program train_build_outputs = program.build( config, train_program, startup_program, mode='train') train_loader = train_build_outputs[0] train_fetch_name_list = train_build_outputs[1] train_fetch_varname_list = train_build_outputs[2] train_opt_loss_name = train_build_outputs[3] model_average = train_build_outputs[-1] # build eval program eval_program = fluid.Program() eval_build_outputs = program.build( config, eval_program, startup_program, mode='eval') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) # initialize train reader train_reader = reader_main(config=config, mode="train") train_loader.set_sample_list_generator(train_reader, places=place) # initialize eval reader eval_reader = reader_main(config=config, mode="eval") exe = fluid.Executor(place) exe.run(startup_program) # compile program for multi-devices train_compile_program = program.create_multi_devices_program( train_program, train_opt_loss_name) # dump mode structure if config['Global']['debug']: if train_alg_type == 'rec' and 'attention' in config['Global'][ 'loss_type']: logger.warning('Does not suport dump attention...') else: summary(train_program) init_model(config, train_program, exe) train_info_dict = {'compile_program':train_compile_program,\ 'train_program':train_program,\ 'reader':train_loader,\ 'fetch_name_list':train_fetch_name_list,\ 'fetch_varname_list':train_fetch_varname_list,\ 'model_average': model_average} eval_info_dict = {'program':eval_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} if train_alg_type == 'det': program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict) elif train_alg_type == 'rec': program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict) else: program.train_eval_cls_run(config, exe, train_info_dict, eval_info_dict)
def train(train_dataset, test_dataset): startup_program = fluid.default_startup_program() main_program = fluid.default_main_program() inference_program = fluid.default_main_program().clone(for_test=True) train_reader = paddle.batch(paddle.reader.shuffle(train_dataset, buf_size=500), batch_size=BATCH_SIZE) test_reader = paddle.batch(paddle.reader.shuffle(test_dataset, buf_size=500), batch_size=BATCH_SIZE) img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') prediction, avg_loss, acc = net_conf(img, label, NUM_CLASSES) optimizer = fluid.optimizer.RMSProp(learning_rate=0.001) optimizer.minimize(avg_loss) place = fluid.CPUPlace() exe = fluid.Executor(place) print('Summary') summary(main_program) feeder = fluid.DataFeeder(feed_list=[img, label], place=place) exe.run(startup_program) epochs = [epoch_id for epoch_id in range(EPOCHS)] # train step = 0 for epoch_id in epochs: print("Epoch %d" % (epoch_id)) for step_id, data in enumerate(train_reader()): metrics = exe.run(main_program, feed=feeder.feed(data), fetch_list=[avg_loss, acc]) if step % 100 == 0: print("Pass %d, Cost %f" % (step, metrics[0])) step += 1 # test total_acc = 0 step = 0 for step_id, data in enumerate(test_reader()): metrics = exe.run(main_program, feed=feeder.feed(data), fetch_list=[avg_loss, acc]) total_acc += metrics[1] step += 1 print("Acc: %f" % (total_acc / step))
def main(): config = program.load_config(FLAGS.config) program.merge_config(FLAGS.opt) logger.info(config) # check if set use_gpu=True in paddlepaddle cpu version use_gpu = config['Global']['use_gpu'] program.check_gpu(use_gpu) alg = config['Global']['algorithm'] assert alg in ['EAST', 'DB', 'Rosetta', 'CRNN', 'STARNet', 'RARE'] if alg in ['Rosetta', 'CRNN', 'STARNet', 'RARE']: config['Global']['char_ops'] = CharacterOps(config['Global']) place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace() startup_program = fluid.Program() train_program = fluid.Program() train_build_outputs = program.build(config, train_program, startup_program, mode='train') train_loader = train_build_outputs[0] train_fetch_name_list = train_build_outputs[1] train_fetch_varname_list = train_build_outputs[2] train_opt_loss_name = train_build_outputs[3] eval_program = fluid.Program() eval_build_outputs = program.build(config, eval_program, startup_program, mode='eval') eval_fetch_name_list = eval_build_outputs[1] eval_fetch_varname_list = eval_build_outputs[2] eval_program = eval_program.clone(for_test=True) train_reader = reader_main(config=config, mode="train") train_loader.set_sample_list_generator(train_reader, places=place) eval_reader = reader_main(config=config, mode="eval") exe = fluid.Executor(place) exe.run(startup_program) # compile program for multi-devices train_compile_program = program.create_multi_devices_program( train_program, train_opt_loss_name) # dump mode structure if config['Global']['debug']: if 'attention' in config['Global']['loss_type']: logger.warning('Does not suport dump attention...') else: summary(train_program) init_model(config, train_program, exe) train_info_dict = {'compile_program':train_compile_program,\ 'train_program':train_program,\ 'reader':train_loader,\ 'fetch_name_list':train_fetch_name_list,\ 'fetch_varname_list':train_fetch_varname_list} eval_info_dict = {'program':eval_program,\ 'reader':eval_reader,\ 'fetch_name_list':eval_fetch_name_list,\ 'fetch_varname_list':eval_fetch_varname_list} if alg in ['EAST', 'DB']: program.train_eval_det_run(config, exe, train_info_dict, eval_info_dict) else: program.train_eval_rec_run(config, exe, train_info_dict, eval_info_dict)