示例#1
0
        def __net_conf(word, target):
            x = fluid.layers.embedding(
                input=word,
                size=[config.src_vocab_size, config.embedding_dim],
                dtype="float32",
                is_sparse=True)
            fwd_lstm, _ = fluid.layers.dynamic_lstm(
                input=fluid.layers.fc(size=config.unit_num * 4, input=x),
                size=config.unit_num * 4,
                candidate_activation="tanh",
                gate_activation="sigmoid",
                cell_activation="sigmoid",
                bias_attr=fluid.ParamAttr(
                    initializer=NormalInitializer(loc=0.0, scale=1.0)),
                is_reverse=False)
            bwd_lstm, _ = fluid.layers.dynamic_lstm(
                input=fluid.layers.fc(size=config.unit_num * 4, input=x),
                size=config.unit_num * 4,
                candidate_activation="tanh",
                gate_activation="sigmoid",
                cell_activation="sigmoid",
                bias_attr=fluid.ParamAttr(
                    initializer=NormalInitializer(loc=0.0, scale=1.0)),
                is_reverse=True)
            outputs = fluid.layers.concat([fwd_lstm, bwd_lstm], axis=1)

            emission = fluid.layers.fc(size=config.tag_num, input=outputs)

            crf_cost = fluid.layers.linear_chain_crf(
                input=emission,
                label=target,
                param_attr=fluid.ParamAttr(name="crfw", ))
            avg_cost = fluid.layers.mean(x=crf_cost)
            return avg_cost, emission
示例#2
0
 def _initialize_alphas(self):
     k = sum(1 for i in range(self._steps) for n in range(2 + i))
     num_ops = len(self._primitives)
     self.alphas_normal = fluid.layers.create_parameter(
         shape=[k, num_ops],
         dtype="float32",
         default_initializer=NormalInitializer(loc=0.0, scale=1e-3))
     self.alphas_reduce = fluid.layers.create_parameter(
         shape=[k, num_ops],
         dtype="float32",
         default_initializer=NormalInitializer(loc=0.0, scale=1e-3))
     self._arch_parameters = [
         self.alphas_normal,
         self.alphas_reduce,
     ]
     if self._method == "PC-DARTS":
         self.betas_normal = fluid.layers.create_parameter(
             shape=[k],
             dtype="float32",
             default_initializer=NormalInitializer(loc=0.0, scale=1e-3))
         self.betas_reduce = fluid.layers.create_parameter(
             shape=[k],
             dtype="float32",
             default_initializer=NormalInitializer(loc=0.0, scale=1e-3))
         self._arch_parameters += [self.betas_normal, self.betas_reduce]
示例#3
0
def mixed_op(x, c_out, stride, index, reduction, name):
    param_attr = ParamAttr(
        name="arch/weight{}_{}".format(2 if reduction else 1, index))
    weight = fluid.layers.create_parameter(
        shape=[len(PRIMITIVES)],
        dtype="float32",
        attr=param_attr,
        default_initializer=NormalInitializer(loc=0.0, scale=1e-3))
    weight = fluid.layers.softmax(weight)
    ops = []
    index = 0
    for primitive in PRIMITIVES:
        op = OPS[primitive](x, c_out, stride, False, name)
        if 'pool' in primitive:
            gama = ParamAttr(name=name + '_' + primitive + "_mixed_bn_gama",
                             initializer=fluid.initializer.Constant(value=1),
                             trainable=False)
            beta = ParamAttr(name=name + '_' + primitive + "_mixed_bn_beta",
                             initializer=fluid.initializer.Constant(value=0),
                             trainable=False)
            op = fluid.layers.batch_norm(
                op,
                param_attr=gama,
                bias_attr=beta,
                moving_mean_name=name + '_' + primitive + "_mixed_bn_mean",
                moving_variance_name=name + '_' + primitive +
                "_mixed_bn_variance")
        ops.append(fluid.layers.elementwise_mul(op, weight[index]))
        index += 1
    out = fluid.layers.sums(ops)
    return out
示例#4
0
 def __rnn(self, input):
     for i in range(self.num_layers):
         hidden = fluid.layers.fc(
             size=self.hidden_dim * 4,
             bias_attr=fluid.ParamAttr(
                 initializer=NormalInitializer(loc=0.0, scale=1.0)),
             input=hidden if i else input)
         return fluid.layers.dynamic_lstm(
             input=hidden,
             size=self.hidden_dim * 4,
             candidate_activation="tanh",
             gate_activation="sigmoid",
             cell_activation="sigmoid",
             bias_attr=fluid.ParamAttr(
                 initializer=NormalInitializer(loc=0.0, scale=1.0)),
             is_reverse=False)
示例#5
0
def vgg16_bn_drop(input,class_dim):
    # 定义卷积块
    def conv_block(input, num_filter, groups, dropouts):
        return fluid.nets.img_conv_group(
            input=input,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * groups,
            conv_filter_size=3,
            conv_act='relu',
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type='max')
    # 定义一个VGG16的卷积组
    conv1 = conv_block(input, 64, 2, [0.3, 0])
    conv2 = conv_block(conv1, 128, 2, [0.4, 0])
    conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0])
    conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0])
    conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0])
    # 定义第一个drop层
    drop = fluid.layers.dropout(x=conv5, dropout_prob=0.5)
    # 定义第一层全连接层
    fc1 = fluid.layers.fc(input=drop, size=512, act=None)
    # 定义BN层
    bn = fluid.layers.batch_norm(input=fc1, act='relu')
    # 定义第二层全连接层
    drop2 = fluid.layers.dropout(x=bn, dropout_prob=0.5)
    # 定义第二层全连接层
    fc2 = fluid.layers.fc(input=drop2, size=512, act=None)

    # 获取全连接输出,获得分类器
    predict = fluid.layers.fc(
        input=fc2,
        size=class_dim,
        act='softmax',
        param_attr=ParamAttr(name="param1", initializer=NormalInitializer()))
    return predict
示例#6
0
    def __init__(self,
                 n_layer,
                 hidden_size=768,
                 name="encoder",
                 search_layer=True,
                 use_fixed_gumbel=False,
                 gumbel_alphas=None):
        super(EncoderLayer, self).__init__()
        self._n_layer = n_layer
        self._hidden_size = hidden_size
        self._n_channel = 256
        self._steps = 3
        self._n_ops = len(ConvBN_PRIMITIVES)
        self.use_fixed_gumbel = use_fixed_gumbel

        self.stem = fluid.dygraph.Sequential(
            Conv2D(num_channels=1,
                   num_filters=self._n_channel,
                   filter_size=[3, self._hidden_size],
                   padding=[1, 0],
                   param_attr=fluid.ParamAttr(initializer=MSRA()),
                   bias_attr=False),
            BatchNorm(num_channels=self._n_channel,
                      param_attr=fluid.ParamAttr(
                          initializer=fluid.initializer.Constant(value=1)),
                      bias_attr=fluid.ParamAttr(
                          initializer=fluid.initializer.Constant(value=0))))

        cells = []
        for i in range(n_layer):
            cell = Cell(steps=self._steps,
                        n_channel=self._n_channel,
                        name="%s/layer_%d" % (name, i))
            cells.append(cell)

        self._cells = fluid.dygraph.LayerList(cells)

        k = sum(1 for i in range(self._steps) for n in range(2 + i))
        num_ops = self._n_ops
        self.alphas = fluid.layers.create_parameter(
            shape=[k, num_ops],
            dtype="float32",
            default_initializer=NormalInitializer(loc=0.0, scale=1e-3))

        # self.k = fluid.layers.create_parameter(
        #     shape=[1, self._n_layer],
        #     dtype="float32",
        #     default_initializer=NormalInitializer(
        #         loc=0.0, scale=1e-3))
        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
        self.bns = []
        self.outs = []
        for i in range(self._n_layer):

            bn = BatchNorm(num_channels=self._n_channel,
                           param_attr=fluid.ParamAttr(
                               initializer=fluid.initializer.Constant(value=1),
                               trainable=False),
                           bias_attr=fluid.ParamAttr(
                               initializer=fluid.initializer.Constant(value=0),
                               trainable=False))
            self.bns.append(bn)

            out = Linear(self._n_channel,
                         3,
                         param_attr=ParamAttr(initializer=MSRA()),
                         bias_attr=ParamAttr(initializer=MSRA()))
            self.outs.append(out)

        self.use_fixed_gumbel = use_fixed_gumbel
        self.gumbel_alphas = gumbel_softmax(self.alphas)
        if gumbel_alphas is not None:
            self.gumbel_alphas = np.array(gumbel_alphas).reshape(
                self.alphas.shape)
        else:
            self.gumbel_alphas = gumbel_softmax(self.alphas)
            self.gumbel_alphas.stop_gradient = True

        print("gumbel_alphas: {}".format(self.gumbel_alphas))
示例#7
0
    def _net_conf(word, mark, target):
        word_embedding = fluid.layers.embedding(input=word,
                                                size=[word_dict_len, word_dim],
                                                dtype='float32',
                                                is_sparse=IS_SPARSE,
                                                param_attr=fluid.ParamAttr(
                                                    name=embedding_name,
                                                    trainable=False))

        mark_embedding = fluid.layers.embedding(input=mark,
                                                size=[mark_dict_len, mark_dim],
                                                dtype='float32',
                                                is_sparse=IS_SPARSE)

        word_caps_vector = fluid.layers.concat(
            input=[word_embedding, mark_embedding], axis=1)
        mix_hidden_lr = 1

        rnn_para_attr = fluid.ParamAttr(initializer=NormalInitializer(
            loc=0.0, scale=0.0),
                                        learning_rate=mix_hidden_lr)
        hidden_para_attr = fluid.ParamAttr(initializer=NormalInitializer(
            loc=0.0, scale=(1. / math.sqrt(hidden_dim) / 3)),
                                           learning_rate=mix_hidden_lr)

        hidden = fluid.layers.fc(
            input=word_caps_vector,
            name="__hidden00__",
            size=hidden_dim,
            act="tanh",
            bias_attr=fluid.ParamAttr(initializer=NormalInitializer(
                loc=0.0, scale=(1. / math.sqrt(hidden_dim) / 3))),
            param_attr=fluid.ParamAttr(initializer=NormalInitializer(
                loc=0.0, scale=(1. / math.sqrt(hidden_dim) / 3))))
        fea = []
        for direction in ["fwd", "bwd"]:
            for i in range(stack_num):
                if i != 0:
                    hidden = fluid.layers.fc(
                        name="__hidden%02d_%s__" % (i, direction),
                        size=hidden_dim,
                        act="stanh",
                        bias_attr=fluid.ParamAttr(
                            initializer=NormalInitializer(loc=0.0, scale=1.0)),
                        input=[hidden, rnn[0], rnn[1]],
                        param_attr=[
                            hidden_para_attr, rnn_para_attr, rnn_para_attr
                        ])
                rnn = fluid.layers.dynamic_lstm(
                    name="__rnn%02d_%s__" % (i, direction),
                    input=hidden,
                    size=hidden_dim,
                    candidate_activation='relu',
                    gate_activation='sigmoid',
                    cell_activation='sigmoid',
                    bias_attr=fluid.ParamAttr(
                        initializer=NormalInitializer(loc=0.0, scale=1.0)),
                    is_reverse=(i % 2) if direction == "fwd" else not i % 2,
                    param_attr=rnn_para_attr)
            fea += [hidden, rnn[0], rnn[1]]

        rnn_fea = fluid.layers.fc(
            size=hidden_dim,
            bias_attr=fluid.ParamAttr(initializer=NormalInitializer(
                loc=0.0, scale=(1. / math.sqrt(hidden_dim) / 3))),
            act="stanh",
            input=fea,
            param_attr=[hidden_para_attr, rnn_para_attr, rnn_para_attr] * 2)

        emission = fluid.layers.fc(
            size=label_dict_len,
            input=rnn_fea,
            param_attr=fluid.ParamAttr(initializer=NormalInitializer(
                loc=0.0, scale=(1. / math.sqrt(hidden_dim) / 3))))

        crf_cost = fluid.layers.linear_chain_crf(
            input=emission,
            label=target,
            param_attr=fluid.ParamAttr(name='crfw',
                                       initializer=NormalInitializer(
                                           loc=0.0,
                                           scale=(1. / math.sqrt(hidden_dim) /
                                                  3)),
                                       learning_rate=mix_hidden_lr))
        avg_cost = fluid.layers.mean(x=crf_cost)
        return avg_cost, emission
示例#8
0
def train(use_cuda, learning_rate, num_passes, BATCH_SIZE=128):
    class_dim = 2
    image_shape = [3, 48, 48]
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    net, conv1 = simplenet(image)
    # 获取全连接输出,获得分类器
    predict = fluid.layers.fc(input=net,
                              size=class_dim,
                              act='softmax',
                              param_attr=ParamAttr(
                                  name="param1",
                                  initializer=NormalInitializer()))

    # 获取损失函数
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    # 定义平均损失函数
    avg_cost = fluid.layers.mean(x=cost)

    # 计算batch,从而来求平均的准确率
    batch_size = fluid.layers.create_tensor(dtype='int64')
    print "batchsize=", batch_size
    batch_acc = fluid.layers.accuracy(input=predict,
                                      label=label,
                                      total=batch_size)

    # 定义优化方法
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(5 * 1e-5))

    opts = optimizer.minimize(avg_cost)

    # 是否使用GPU
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    # 创建调试器
    exe = fluid.Executor(place)
    # 初始化调试器
    exe.run(fluid.default_startup_program())
    # 保存结果
    model_save_dir = "./models"

    # 获取训练数据
    resizesize = 60
    cropsize = 48
    mydata = Dataset(cropsize=cropsize, resizesize=resizesize)
    mydatareader = mydata.train_reader(train_list='./all_shuffle_train.txt')
    train_reader = paddle.batch(reader=paddle.reader.shuffle(
        reader=mydatareader, buf_size=50000),
                                batch_size=128)

    # 指定数据和label的对应关系
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    step = 0
    sample_num = 0
    start_up_program = framework.default_startup_program()
    param1_var = start_up_program.global_block().var("param1")

    accuracy = fluid.average.WeightedAverage()
    # 开始训练,使用循环的方式来指定训多少个Pass
    for pass_id in range(num_passes):
        # 从训练数据中按照一个个batch来读取数据
        accuracy.reset()
        for batch_id, data in enumerate(train_reader()):
            loss, conv1_out, param1, acc, weight = exe.run(
                fluid.default_main_program(),
                feed=feeder.feed(data),
                fetch_list=[
                    avg_cost, conv1, param1_var, batch_acc, batch_size
                ])
            accuracy.add(value=acc, weight=weight)
            pass_acc = accuracy.eval()

            # 重新启动图形化展示组件
            if sample_num == 0:
                input_image.start_sampling()
                conv_image.start_sampling()
            # 获取taken
            idx1 = input_image.is_sample_taken()
            idx2 = conv_image.is_sample_taken()
            # 保证它们的taken是一样的
            assert idx1 == idx2
            idx = idx1
            if idx != -1:
                # 加载输入图像的数据数据
                image_data = data[0][0]
                input_image_data = np.transpose(
                    image_data.reshape(image_shape), axes=[1, 2, 0])
                input_image.set_sample(idx, input_image_data.shape,
                                       input_image_data.flatten())
                # 加载卷积数据
                conv_image_data = conv1_out[0][0]
                conv_image.set_sample(idx, conv_image_data.shape,
                                      conv_image_data.flatten())
                # 完成输出一次
                sample_num += 1
                if sample_num % num_samples == 0:
                    input_image.finish_sampling()
                    conv_image.finish_sampling()
                    sample_num = 0

            # 加载趋势图的数据
            loss_scalar.add_record(step, loss)
            acc_scalar.add_record(step, acc)
            # 添加模型结构数据
            param1_histgram.add_record(step, param1.flatten())
            # 输出训练日志
            print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" +
                  str(pass_acc))
            step += 1
            model_path = os.path.join(model_save_dir, str(pass_id))
            if not os.path.exists(model_save_dir):
                os.mkdir(model_save_dir)
            fluid.io.save_inference_model(model_path, ['image'], [predict],
                                          exe)
示例#9
0
    def __init__(self,
                 num_labels,
                 n_layer,
                 hidden_size=768,
                 name="encoder",
                 search_layer=True,
                 use_fixed_gumbel=False,
                 gumbel_alphas=None):
        super(EncoderLayer, self).__init__()
        self._n_layer = n_layer
        self._hidden_size = hidden_size
        self._n_channel = 128
        self._steps = 3
        self._n_ops = len(ConvBN_PRIMITIVES)
        self.use_fixed_gumbel = use_fixed_gumbel

        self.stem0 = fluid.dygraph.Sequential(
            Conv2D(num_channels=1,
                   num_filters=self._n_channel,
                   filter_size=[3, self._hidden_size],
                   padding=[1, 0],
                   param_attr=fluid.ParamAttr(initializer=MSRA()),
                   bias_attr=False),
            BatchNorm(num_channels=self._n_channel,
                      param_attr=fluid.ParamAttr(
                          initializer=fluid.initializer.Constant(value=1)),
                      bias_attr=fluid.ParamAttr(
                          initializer=fluid.initializer.Constant(value=0))))

        self.stem1 = fluid.dygraph.Sequential(
            Conv2D(num_channels=1,
                   num_filters=self._n_channel,
                   filter_size=[3, self._hidden_size],
                   padding=[1, 0],
                   param_attr=fluid.ParamAttr(initializer=MSRA()),
                   bias_attr=False),
            BatchNorm(num_channels=self._n_channel,
                      param_attr=fluid.ParamAttr(
                          initializer=fluid.initializer.Constant(value=1)),
                      bias_attr=fluid.ParamAttr(
                          initializer=fluid.initializer.Constant(value=0))))

        cells = []
        for i in range(n_layer):
            cell = Cell(steps=self._steps,
                        n_channel=self._n_channel,
                        name="%s/layer_%d" % (name, i))
            cells.append(cell)

        self._cells = fluid.dygraph.LayerList(cells)

        k = sum(1 for i in range(self._steps) for n in range(2 + i))
        num_ops = self._n_ops
        self.alphas = fluid.layers.create_parameter(
            shape=[k, num_ops],
            dtype="float32",
            default_initializer=NormalInitializer(loc=0.0, scale=1e-3))

        self.pool2d_avg = Pool2D(pool_type='avg', global_pooling=True)
        self.bns = []
        self.outs = []
        for i in range(self._n_layer):
            bn = BatchNorm(num_channels=self._n_channel,
                           param_attr=fluid.ParamAttr(
                               initializer=fluid.initializer.Constant(value=1),
                               trainable=False),
                           bias_attr=fluid.ParamAttr(
                               initializer=fluid.initializer.Constant(value=0),
                               trainable=False))
            out = Linear(self._n_channel,
                         num_labels,
                         param_attr=ParamAttr(initializer=MSRA()),
                         bias_attr=ParamAttr(initializer=MSRA()))
            self.bns.append(bn)
            self.outs.append(out)
        self._bns = fluid.dygraph.LayerList(self.bns)
        self._outs = fluid.dygraph.LayerList(self.outs)

        self.use_fixed_gumbel = use_fixed_gumbel
        #self.gumbel_alphas = gumbel_softmax(self.alphas, 0).detach()

        mrpc_arch = [
            [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],  # std_conv7 0     # node 0
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],  # dil_conv5 1
            [0, 0, 1, 0, 0, 0, 0, 0, 0, 0],  # std_conv7 0     # node 1
            [0, 0, 0, 0, 1, 0, 0, 0, 0, 0],  # dil_conv5 1
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],  # zero 2
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],  # zero 0          # node2
            [1, 0, 0, 0, 0, 0, 0, 0, 0, 0],  # std_conv3 1
            [0, 0, 0, 0, 0, 0, 0, 0, 0, 1],  # zero 2
            [0, 0, 0, 1, 0, 0, 0, 0, 0, 0]  # dil_conv3 3
        ]
        self.gumbel_alphas = to_variable(
            np.array(mrpc_arch).astype(np.float32))
        self.gumbel_alphas.stop_gradient = True
        print("gumbel_alphas: \n", self.gumbel_alphas.numpy())
示例#10
0
def train(use_cuda, learning_rate, num_passes, BATCH_SIZE=128):
    # 定义图像的类别数量
    class_dim = 10
    # 定义图像的通道数和大小
    image_shape = [3, 32, 32]
    # 定义输入数据大小,指定图像的形状,数据类型是浮点型
    image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
    # 定义标签,类型是整型
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # 获取神经网络
    net, conv1 = vgg16_bn_drop(image)
    # 获取全连接输出,获得分类器
    predict = fluid.layers.fc(
        input=net,
        size=class_dim,
        act='softmax',
        param_attr=ParamAttr(name="param1", initializer=NormalInitializer()))

    # 获取损失函数
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    # 定义平均损失函数
    avg_cost = fluid.layers.mean(x=cost)

    # 每个batch计算的时候能取到当前batch里面样本的个数,从而来求平均的准确率
    batch_size = fluid.layers.create_tensor(dtype='int64')
    print batch_size
    batch_acc = fluid.layers.accuracy(input=predict, label=label, total=batch_size)

    # 定义优化方法
    optimizer = fluid.optimizer.Momentum(
        learning_rate=learning_rate,
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(5 * 1e-5))

    opts = optimizer.minimize(avg_cost)

    # 是否使用GPU
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    # 创建调试器
    exe = fluid.Executor(place)
    # 初始化调试器
    exe.run(fluid.default_startup_program())

    # 获取训练数据
    train_reader = paddle.batch(
        paddle.dataset.cifar.train10(), batch_size=BATCH_SIZE)

    # 指定数据和label的对于关系
    feeder = fluid.DataFeeder(place=place, feed_list=[image, label])

    step = 0
    sample_num = 0
    start_up_program = framework.default_startup_program()
    param1_var = start_up_program.global_block().var("param1")

    accuracy = fluid.average.WeightedAverage()
    # 开始训练,使用循环的方式来指定训多少个Pass
    for pass_id in range(num_passes):
        # 从训练数据中按照一个个batch来读取数据
        accuracy.reset()
        for batch_id, data in enumerate(train_reader()):
            loss, conv1_out, param1, acc, weight = exe.run(fluid.default_main_program(),
                                                           feed=feeder.feed(data),
                                                           fetch_list=[avg_cost, conv1, param1_var, batch_acc,
                                                                       batch_size])
            accuracy.add(value=acc, weight=weight)
            pass_acc = accuracy.eval()

            # 重新启动图形化展示组件
            if sample_num == 0:
                input_image.start_sampling()
                conv_image.start_sampling()
            # 获取taken
            idx1 = input_image.is_sample_taken()
            idx2 = conv_image.is_sample_taken()
            # 保证它们的taken是一样的
            assert idx1 == idx2
            idx = idx1
            if idx != -1:
                # 加载输入图像的数据数据
                image_data = data[0][0]
                input_image_data = np.transpose(
                    image_data.reshape(image_shape), axes=[1, 2, 0])
                input_image.set_sample(idx, input_image_data.shape,
                                       input_image_data.flatten())
                # 加载卷积数据
                conv_image_data = conv1_out[0][0]
                conv_image.set_sample(idx, conv_image_data.shape,
                                      conv_image_data.flatten())

                # 完成输出一次
                sample_num += 1
                if sample_num % num_samples == 0:
                    input_image.finish_sampling()
                    conv_image.finish_sampling()
                    sample_num = 0

            # 加载趋势图的数据
            loss_scalar.add_record(step, loss)
            acc_scalar.add_record(step, acc)
            # 添加模型结构数据
            param1_histgram.add_record(step, param1.flatten())
            # 输出训练日志
            print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str(pass_acc))
            step += 1