def test_detection_output(self): program = Program() with program_guard(program): pb = layers.data(name='prior_box', shape=[10, 4], append_batch_size=False, dtype='float32') pbv = layers.data(name='prior_box_var', shape=[10, 4], append_batch_size=False, dtype='float32') loc = layers.data(name='target_box', shape=[2, 10, 4], append_batch_size=False, dtype='float32') scores = layers.data(name='scores', shape=[2, 10, 20], append_batch_size=False, dtype='float32') out = layers.detection_output(scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) out2, index = layers.detection_output(scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv, return_index=True) self.assertIsNotNone(out) self.assertIsNotNone(out2) self.assertIsNotNone(index) self.assertEqual(out.shape[-1], 6) print(str(program))
def test_detection_output(self): program = Program() with program_guard(program): pb = layers.data( name='prior_box', shape=[10, 4], append_batch_size=False, dtype='float32') pbv = layers.data( name='prior_box_var', shape=[10, 4], append_batch_size=False, dtype='float32') loc = layers.data( name='target_box', shape=[2, 10, 4], append_batch_size=False, dtype='float32') scores = layers.data( name='scores', shape=[2, 10, 20], append_batch_size=False, dtype='float32') out = layers.detection_output( scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) self.assertIsNotNone(out) self.assertEqual(out.shape[-1], 6) print(str(program))