def get_optimizer_dygraph(self, parameter_list): optimizer = ExponentialMovingAverage(0.999) return optimizer
def main(): env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) if FLAGS.enable_ce: random.seed(0) np.random.seed(0) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() save_only = getattr(cfg, 'save_prediction_only', False) if save_only: raise NotImplementedError('The config file only support prediction,' ' training stage is not implemented now') main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() if FLAGS.enable_ce: startup_prog.random_seed = 1000 train_prog.random_seed = 1000 with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() if 'use_ema' in cfg and cfg['use_ema']: global_steps = _decay_step_counter() ema = ExponentialMovingAverage( cfg['ema_decay'], thres_steps=global_steps) ema.update() # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader, devices_num=1) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: compiled_eval_prog = fluid.CompiledProgram(eval_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' ignore_params = cfg.finetune_exclude_pretrained_params \ if 'finetune_exclude_pretrained_params' in cfg else [] start_iter = 0 if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() elif cfg.pretrain_weights and fuse_bn and not ignore_params: checkpoint.load_and_fusebn(exe, train_prog, cfg.pretrain_weights) elif cfg.pretrain_weights: checkpoint.load_params( exe, train_prog, cfg.pretrain_weights, ignore_params=ignore_params) train_reader = create_reader( cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg, devices_num=devices_num) train_loader.set_sample_list_generator(train_reader, place) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_smooth_window) best_box_ap_list = [0.0, 0] #[map, iter] # use VisualDL to log data if FLAGS.use_vdl: from visualdl import LogWriter vdl_writer = LogWriter(FLAGS.vdl_log_dir) vdl_loss_step = 0 vdl_mAP_step = 0 for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # use vdl-paddle to log loss if FLAGS.use_vdl: if it % cfg.log_iter == 0: for loss_name, loss_value in stats.items(): vdl_writer.add_scalar(loss_name, loss_value, vdl_loss_step) vdl_loss_step += 1 train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) # NOTE : profiler tools, used for benchmark if FLAGS.is_profiler and it == 5: profiler.start_profiler("All") elif FLAGS.is_profiler and it == 10: profiler.stop_profiler("total", FLAGS.profiler_path) return if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and (not FLAGS.dist or trainer_id == 0): save_name = str(it) if it != cfg.max_iters - 1 else "model_final" if 'use_ema' in cfg and cfg['use_ema']: exe.run(ema.apply_program) checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation resolution = None if 'Mask' in cfg.architecture: resolution = model.mask_head.resolution results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg, resolution=resolution) box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) # use vdl_paddle to log mAP if FLAGS.use_vdl: vdl_writer.add_scalar("mAP", box_ap_stats[0], vdl_mAP_step) vdl_mAP_step += 1 if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) if 'use_ema' in cfg and cfg['use_ema']: exe.run(ema.restore_program) train_loader.reset()
# 建立损失函数 y_true = P.data(name='y_true', shape=[-1, 8, 28, 28], append_batch_size=False, dtype='float32') # 先把差值逐项平方,可以用P.pow()这个op,也可以用python里的运算符**。 mseloss = P.pow(y_true - act02_out_tensor, 2) mseloss = P.reduce_mean(mseloss) # 再求平均,即mse损失函数 # 优化器 optimizer = fluid.optimizer.SGD(learning_rate=lr) optimizer.minimize(mseloss) # ema global_steps = _decay_step_counter() ema = ExponentialMovingAverage(ema_decay, thres_steps=global_steps) ema.update() eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): # 重新建立一次网络,用相同的张量名,不用写损失层 inputs = P.data(name='input_1', shape=[-1, 3, 28, 28], append_batch_size=False, dtype='float32') conv01_out_tensor = fluid.layers.conv2d( input=inputs, num_filters=8, filter_size=1, stride=1,