def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NDHWC"
                if self.channel_last:
                    x = x = fluid.data(
                        "input", (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype)
                else:
                    x = fluid.data(
                        "input", (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype)
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
                y = F.conv3d(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format)

                if self.act == 'sigmoid':
                    y = F.sigmoid(y)
示例#2
0
 def functional(self, place):
     main = fluid.Program()
     start = fluid.Program()
     with fluid.unique_name.guard():
         with fluid.program_guard(main, start):
             input_shape = (-1, -1, -1, -1, self.num_channels) \
                 if self.channel_last else (-1, self.num_channels, -1, -1, -1)
             x_var = fluid.data("input", input_shape, dtype=self.dtype)
             w_var = fluid.data(
                 "weight", self.weight_shape, dtype=self.dtype)
             b_var = fluid.data(
                 "bias", (self.num_filters, ), dtype=self.dtype)
             y_var = F.conv3d(
                 x_var,
                 w_var,
                 None if self.no_bias else b_var,
                 padding=self.padding,
                 stride=self.stride,
                 dilation=self.dilation,
                 groups=self.groups,
                 act=self.act,
                 use_cudnn=self.use_cudnn,
                 data_format=self.data_format)
     feed_dict = {"input": self.input, "weight": self.weight}
     if self.bias is not None:
         feed_dict["bias"] = self.bias
     exe = fluid.Executor(place)
     exe.run(start)
     y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
     return y_np
 def dygraph_case(self):
     with dg.guard():
         x = dg.to_variable(self.input, dtype=paddle.float32)
         w = dg.to_variable(self.filter, dtype=paddle.float32)
         b = None if self.bias is None else dg.to_variable(
             self.bias, dtype=paddle.float32)
         y = F.conv3d(x,
                      w,
                      b,
                      padding=self.padding,
                      stride=self.stride,
                      dilation=self.dilation,
                      groups=self.groups,
                      data_format=self.data_format)
示例#4
0
 def dygraph_case(self):
     with dg.guard(self.place):
         x = dg.to_variable(self.input)
         weight = dg.to_variable(self.weight)
         bias = None if self.no_bias else dg.to_variable(self.bias)
         y = F.conv3d(x,
                      weight,
                      bias,
                      padding=self.padding,
                      stride=self.stride,
                      dilation=self.dilation,
                      act=self.act,
                      groups=self.groups,
                      data_format=self.data_format,
                      use_cudnn=self.use_cudnn)
         out = y.numpy()
     return out
    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
                    x = x = fluid.data("input",
                                       (-1, -1, -1, -1, self.in_channels),
                                       dtype=self.dtype)
                else:
                    x = fluid.data("input", (-1, self.in_channels, -1, -1, -1),
                                   dtype=self.dtype)
                weight = fluid.data("weight",
                                    self.weight.shape,
                                    dtype=self.dtype)
                if not self.no_bias:
                    bias = fluid.data("bias",
                                      self.bias.shape,
                                      dtype=self.dtype)
                y = F.conv3d(x,
                             weight,
                             None if self.no_bias else bias,
                             padding=self.padding,
                             stride=self.stride,
                             dilation=self.dilation,
                             groups=self.groups,
                             data_format=self.data_format)

                if self.act == 'sigmoid':
                    y = F.sigmoid(y)

        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
        out, = exe.run(main, feed=feed_dict, fetch_list=[y])
        return out
print('================= 逐元素乘、1x1x1的3D卷积 ==================')
N = 2
in_C = 3
out_C = 16
D = 32  # 增加一个维:深度
H = 64
W = 64
C = out_C

# w = paddle.randn((C, in_C, kH, kW))

x = paddle.randn((N, in_C, D, H, W))
w = paddle.randn((C, in_C, 1, 1, 1))

y = F.conv3d(x, w)  # [N, C, D, H, W]

x_in = L.reshape(x, (N, 1, in_C, D, H, W))
w_r = L.reshape(w, (1, C, in_C, 1, 1, 1))
y2 = x_in * w_r  # [N, C, in_C, D, H, W]
y2 = L.reduce_sum(y2, dim=[
    2,
])  # [N, C, D, H, W]

y = y.numpy()
y2 = y2.numpy()
d = np.sum((y - y2)**2)
print(d)
'''
总结:
1x1x1的3D卷积也有相似的结论。只不过口诀由