def test(): data = conf_helps.data_layer(name="word", size=dict_dim) label = conf_helps.data_layer(name="label", size=label_dim) emb = conf_helps.embedding_layer(input=data, size=word_dim) boot_layer = conf_helps.data_layer(name="boot", size=10) boot_layer = conf_helps.fc_layer( name='boot_fc', input=boot_layer, size=10) def step(y, wid): z = conf_helps.embedding_layer(input=wid, size=word_dim) mem = conf_helps.memory( name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = conf_helps.fc_layer( input=[y, z, mem], size=hidden_dim, act=conf_helps.TanhActivation(), bias_attr=True, name="rnn_state") return out out = conf_helps.recurrent_group( name="rnn", step=step, input=[emb, data]) rep = conf_helps.last_seq(input=out) prob = conf_helps.fc_layer( size=label_dim, input=rep, act=conf_helps.SoftmaxActivation(), bias_attr=True) conf_helps.outputs( conf_helps.classification_cost( input=prob, label=label))
def test(): data = conf_helps.data_layer(name="word", size=dict_dim) label = conf_helps.data_layer(name="label", size=label_dim) emb = conf_helps.embedding_layer(input=data, size=word_dim) boot_layer = conf_helps.data_layer(name="boot", size=10) boot_layer = conf_helps.fc_layer(name='boot_fc', input=boot_layer, size=10) def step(y, wid): z = conf_helps.embedding_layer(input=wid, size=word_dim) mem = conf_helps.memory(name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = conf_helps.fc_layer(input=[y, z, mem], size=hidden_dim, act=conf_helps.TanhActivation(), bias_attr=True, name="rnn_state") return out out = conf_helps.recurrent_group(name="rnn", step=step, input=[emb, data]) rep = conf_helps.last_seq(input=out) prob = conf_helps.fc_layer(size=label_dim, input=rep, act=conf_helps.SoftmaxActivation(), bias_attr=True) conf_helps.outputs( conf_helps.classification_cost(input=prob, label=label))
def test(): data = conf_helps.data_layer(name="word", size=dict_dim) embd = conf_helps.embedding_layer(input=data, size=word_dim) conf_helps.recurrent_group(name="rnn", step=step, input=embd, reverse=True)
def step(y, wid): z = conf_helps.embedding_layer(input=wid, size=word_dim) mem = conf_helps.memory(name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = conf_helps.fc_layer(input=[y, z, mem], size=hidden_dim, act=conf_helps.TanhActivation(), bias_attr=True, name="rnn_state") return out
def step(y, wid): z = conf_helps.embedding_layer(input=wid, size=word_dim) mem = conf_helps.memory( name="rnn_state", size=hidden_dim, boot_layer=boot_layer) out = conf_helps.fc_layer( input=[y, z, mem], size=hidden_dim, act=conf_helps.TanhActivation(), bias_attr=True, name="rnn_state") return out
def test(): data = conf_helps.data_layer(name="word", size=dict_dim) embd = conf_helps.embedding_layer(input=data, size=word_dim) conf_helps.recurrent_group( name="rnn", step=step, input=embd, reverse=True)