示例#1
0
        def parse_new_rnn():
            data = layer.data(name="word",
                              type=data_type.dense_vector(dict_dim))
            label = layer.data(name="label",
                               type=data_type.dense_vector(label_dim))
            emb = layer.embedding(input=data, size=word_dim)
            boot_layer = layer.data(name="boot",
                                    type=data_type.dense_vector(10))
            boot_layer = layer.fc(name='boot_fc', input=boot_layer, size=10)

            def step(y, wid):
                z = layer.embedding(input=wid, size=word_dim)
                mem = layer.memory(name="rnn_state",
                                   size=hidden_dim,
                                   boot_layer=boot_layer)
                out = layer.fc(input=[y, z, mem],
                               size=hidden_dim,
                               act=activation.Tanh(),
                               bias_attr=True,
                               name="rnn_state")
                return out

            out = layer.recurrent_group(name="rnn",
                                        step=step,
                                        input=[emb, data])

            rep = layer.last_seq(input=out)
            prob = layer.fc(size=label_dim,
                            input=rep,
                            act=activation.Softmax(),
                            bias_attr=True)

            cost = layer.classification_cost(input=prob, label=label)

            return str(layer.parse_network(cost))
示例#2
0
    def test_evaluator(self):
        img = layer.data(name='pixel2', type=data_type.dense_vector(784))
        output = layer.fc(input=img,
                          size=10,
                          act=activation.Softmax(),
                          name='fc_here')
        lbl = layer.data(name='label2', type=data_type.integer_value(10))
        cost = layer.cross_entropy_cost(input=output, label=lbl)

        evaluator.classification_error(input=output, label=lbl)
        print layer.parse_network(cost)
        print layer.parse_network(output)
示例#3
0
    def network(self):
        """
        Implements the detail of the model.
        """
        self.check_and_create_data()
        self.create_shared_params()
        q_enc = self.get_enc(self.q_ids, type='q')
        a_enc = self.get_enc(self.a_ids, type='q')

        q_proj_left = layer.fc(size=self.emb_dim * 2,
                               bias_attr=False,
                               param_attr=Attr.Param(self.name + '_left.wq'),
                               input=q_enc)
        q_proj_right = layer.fc(size=self.emb_dim * 2,
                                bias_attr=False,
                                param_attr=Attr.Param(self.name + '_right.wq'),
                                input=q_enc)
        left_match = self.recurrent_group(
            self.name + '_left',
            [layer.StaticInput(q_enc),
             layer.StaticInput(q_proj_left), a_enc],
            reverse=False)
        right_match = self.recurrent_group(
            self.name + '_right',
            [layer.StaticInput(q_enc),
             layer.StaticInput(q_proj_right), a_enc],
            reverse=True)
        match_seq = layer.concat(input=[left_match, right_match])
        with layer.mixed(size=match_seq.size,
                         act=Act.Identity(),
                         layer_attr=Attr.ExtraLayerAttribute(drop_rate=0.2),
                         bias_attr=False) as dropped:
            dropped += layer.identity_projection(match_seq)
        match_result = layer.pooling(input=dropped,
                                     pooling_type=paddle.pooling.Max())
        cls = layer.fc(input=match_result,
                       act=Act.Softmax(),
                       size=self.label_dim)
        return cls
示例#4
0
import paddle.v2.layer as layer
import paddle.v2.pooling as pooling
import paddle.v2.networks as networks

pixel = layer.data(name='pixel', type=data_type.dense_vector(128))
label = layer.data(name='label', type=data_type.integer_value(10))
weight = layer.data(name='weight', type=data_type.dense_vector(1))
combine_weight = layer.data(name='weight_combine',
                            type=data_type.dense_vector(10))
score = layer.data(name='score', type=data_type.dense_vector(1))

hidden = layer.fc(input=pixel,
                  size=100,
                  act=activation.Sigmoid(),
                  param_attr=attr.Param(name='hidden'))
inference = layer.fc(input=hidden, size=10, act=activation.Softmax())
conv = layer.img_conv(input=pixel,
                      filter_size=1,
                      filter_size_y=1,
                      num_channels=8,
                      num_filters=16,
                      act=activation.Linear())


class ImageLayerTest(unittest.TestCase):
    def test_conv_layer(self):
        conv_shift = layer.conv_shift(a=pixel, b=score)
        print layer.parse_network(conv, conv_shift)

    def test_pooling_layer(self):
        maxpool = layer.img_pool(input=conv,