def func_dygraph(self): for place in self.places: paddle.disable_static() x = paddle.to_tensor(self.input, place=place) if self.prepend is not None: self.prepend = paddle.to_tensor(self.prepend, place=place) if self.append is not None: self.append = paddle.to_tensor(self.append, place=place) out = paddle.diff(x, n=self.n, axis=self.axis, prepend=self.prepend, append=self.append) self.assertTrue((out.numpy() == self.output).all(), True)
def func_grad(self): for place in self.places: x = paddle.to_tensor(self.input, place=place, stop_gradient=False) if self.prepend is not None: self.prepend = paddle.to_tensor(self.prepend, place=place) if self.append is not None: self.append = paddle.to_tensor(self.append, place=place) out = paddle.diff(x, n=self.n, axis=self.axis, prepend=self.prepend, append=self.append) try: out.backward() x_grad = x.grad except: raise RuntimeError("Check Diff Gradient Failed")
def test_static(self): paddle.enable_static() places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for place in places: with fluid.program_guard(fluid.Program(), fluid.Program()): x = paddle.fluid.data( name="input", shape=self.input.shape, dtype=self.input.dtype) has_pend = False prepend = None append = None if self.prepend is not None: has_pend = True prepend = paddle.fluid.data( name="prepend", shape=self.prepend.shape, dtype=self.prepend.dtype) if self.append is not None: has_pend = True append = paddle.fluid.data( name="append", shape=self.append.shape, dtype=self.append.dtype) exe = fluid.Executor(place) out = paddle.diff( x, n=self.n, axis=self.axis, prepend=prepend, append=append) fetches = exe.run(fluid.default_main_program(), feed={ "input": self.input, "prepend": self.prepend, "append": self.append }, fetch_list=[out]) self.assertTrue((fetches[0] == self.output).all(), True)