示例#1
0
    def _topk(self, scores):
        k = self.max_per_img
        shape_fm = paddle.shape(scores)
        shape_fm.stop_gradient = True
        cat, height, width = shape_fm[1], shape_fm[2], shape_fm[3]
        # batch size is 1
        scores_r = paddle.reshape(scores, [cat, -1])
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_scores, topk_inds = paddle.topk(scores_r, k)
        topk_ys = topk_inds // width
        topk_xs = topk_inds % width

        topk_score_r = paddle.reshape(topk_scores, [-1])
        topk_score, topk_ind = paddle.topk(topk_score_r, k)
        k_t = paddle.full(paddle.shape(topk_ind), k, dtype='int64')
        topk_clses = paddle.cast(paddle.floor_divide(topk_ind, k_t), 'float32')

        topk_inds = paddle.reshape(topk_inds, [-1])
        topk_ys = paddle.reshape(topk_ys, [-1, 1])
        topk_xs = paddle.reshape(topk_xs, [-1, 1])
        topk_inds = paddle.gather(topk_inds, topk_ind)
        topk_ys = paddle.gather(topk_ys, topk_ind)
        topk_xs = paddle.gather(topk_xs, topk_ind)

        return topk_score, topk_inds, topk_clses, topk_ys, topk_xs
示例#2
0
    def test_dygraph(self):
        with fluid.dygraph.guard():
            np_x = np.array([2, 3, 8, 7]).astype('int64')
            np_y = np.array([1, 5, 3, 3]).astype('int64')
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            z = paddle.floor_divide(x, y)
            np_z = z.numpy()
            z_expected = np.array([2, 0, 2, 2])
            self.assertEqual((np_z == z_expected).all(), True)

        with fluid.dygraph.guard(fluid.CPUPlace()):
            # divide by zero
            np_x = np.array([2, 3, 4])
            np_y = np.array([0])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            try:
                z = x // y
            except Exception as e:
                print("Error: Divide by zero encounter in floor_divide\n")

            # divide by zero
            np_x = np.array([2])
            np_y = np.array([0, 0, 0])
            x = paddle.to_tensor(np_x, dtype="int32")
            y = paddle.to_tensor(np_y, dtype="int32")
            try:
                z = x // y
            except Exception as e:
                print("Error: Divide by zero encounter in floor_divide\n")
示例#3
0
    def test_name(self):
        with fluid.program_guard(fluid.Program()):
            x = fluid.data(name="x", shape=[2, 3], dtype="int64")
            y = fluid.data(name='y', shape=[2, 3], dtype='int64')

            y_1 = paddle.floor_divide(x, y, name='div_res')
            self.assertEqual(('div_res' in y_1.name), True)
示例#4
0
 def forward(self, inputs, inputs_):
     """
     forward
     """
     x = paddle.floor_divide(inputs, inputs_)
     return x
    def check_static_result(self, place):
        # rule 1
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = np.array([1, 2, 3])
            self.assertRaises(TypeError, paddle.floor_divide, x=x, y=y)

        # rule 2: both the inputs are not Tensor
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = 2
            y = 4
            res = paddle.floor_divide(x, y)
            exe = fluid.Executor(place)
            np_z = exe.run(fluid.default_main_program(),
                           feed={},
                           fetch_list=[res])
            self.assertEqual(np_z[0] == 0., True)

        # rule 3:
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = fluid.data(name="y", shape=[3], dtype="float32")
            self.assertRaises(TypeError, paddle.floor_divide, x=x, y=y)

        # rule 4: x is Tensor, y is scalar
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = 2
            exe = fluid.Executor(place)
            res = x // y
            np_z = exe.run(fluid.default_main_program(),
                           feed={"x": np.array([2, 3, 4]).astype('float64')},
                           fetch_list=[res])
            z_expected = np.array([1., 1., 2.])
            self.assertEqual((np_z[0] == z_expected).all(), True)

        # rule 5: y is Tensor, x is scalar
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = 2
            exe = fluid.Executor(place)
            res = y // x
            np_z = exe.run(fluid.default_main_program(),
                           feed={"x": np.array([2, 8, 4]).astype('float64')},
                           fetch_list=[res])
            z_expected = np.array([1., 0., 0.])
            self.assertEqual((np_z[0] == z_expected).all(), True)

        # rule 6: y is Tensor, x is Tensor
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[3], dtype="float64")
            y = fluid.data(name="y", shape=[3], dtype="float64")
            exe = fluid.Executor(place)
            res = x // y
            np_z = exe.run(fluid.default_main_program(),
                           feed={
                               "x": np.array([2, 3, 4]).astype('float64'),
                               "y": np.array([1, 5, 2]).astype('float64')
                           },
                           fetch_list=[res])
            z_expected = np.array([2., 0., 2.])
            self.assertEqual((np_z[0] == z_expected).all(), True)
    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                # rule 1 : avoid numpy.ndarray
                np_x = np.array([2, 3, 4])
                np_y = np.array([1, 5, 2])
                x = paddle.to_tensor(np_x)
                self.assertRaises(TypeError, paddle.floor_divide, x=x, y=np_y)

                # rule 2: both the inputs are not Tensor
                z = paddle.floor_divide(3, 2)
                self.assertEqual(z.numpy()[0] == 1., True)

                # rule 3: both the inputs are Tensor
                np_x = np.array([2, 3, 4])
                np_y = np.array([1, 5, 2])
                x = paddle.to_tensor(np_x, dtype="float32")
                y = paddle.to_tensor(np_y, dtype="float64")
                self.assertRaises(TypeError, paddle.floor_divide, x=x, y=y)

                # rule 4: x is Tensor, y is scalar
                np_x = np.array([2, 3, 4])
                x = paddle.to_tensor(np_x, dtype="int32")
                y = 2
                z = x // y
                z_expected = np.array([1, 1, 2])
                self.assertEqual((z_expected == z.numpy()).all(), True)

                # rule 5: y is Tensor, x is scalar
                np_x = np.array([2, 1, 4])
                x = paddle.to_tensor(np_x, dtype="int32")
                y = 2
                z = y // x
                z_expected = np.array([1, 2, 0])
                self.assertEqual((z_expected == z.numpy()).all(), True)

                # rule 6: y is Tensor, x is Tensor
                np_x = np.array([2, 3, 4])
                np_y = np.array([1, 5, 2])
                x = paddle.to_tensor(np_x)
                y = paddle.to_tensor(np_y)
                z = x // y
                z_expected = np.array([2., 0., 2.])
                self.assertEqual((z_expected == z.numpy()).all(), True)

        with fluid.dygraph.guard(fluid.CPUPlace()):
            # divide by zero
            np_x = np.array([2, 3, 4])
            np_y = np.array([0])
            x = paddle.to_tensor(np_x)
            y = paddle.to_tensor(np_y)
            try:
                z = x // y
            except Exception as e:
                print("Error: Divide by zero encounter in floor_divide\n")

            # divide by zero
            np_x = np.array([2])
            np_y = np.array([0, 0, 0])
            x = paddle.to_tensor(np_x, dtype="int32")
            y = paddle.to_tensor(np_y, dtype="int32")
            try:
                z = x // y
            except Exception as e:
                print("Error: Divide by zero encounter in floor_divide\n")