示例#1
0
def swith_rng_state(rng_state):
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
    paddle.set_cuda_rng_state(rng_state)
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)
示例#2
0
 def rng_state(self, name=MODEL_PARALLEL_RNG):
     if name not in self.states_:
         raise ValueError('state {} does not exist'.format(name))
     orig_cuda_rng_state = paddle.get_cuda_rng_state()
     paddle.set_cuda_rng_state(self.states_[name])
     try:
         yield
     finally:
         self.states_[name] = paddle.get_cuda_rng_state()
         paddle.set_cuda_rng_state(orig_cuda_rng_state)
示例#3
0
 def add(self, name, seed):
     if seed in self.seeds_:
         raise ValueError('seed {} already exists'.format(seed))
     self.seeds_.add(seed)
     if name in self.states_:
         raise ValueError('state {} already exists'.format(name))
     orig_rng_state = paddle.get_cuda_rng_state()
     paddle.seed(seed)
     self.states_[name] = paddle.get_cuda_rng_state()
     paddle.set_cuda_rng_state(orig_rng_state)
示例#4
0
def _swith_rng_state_tracker(rng_state, tracker):
    orig_cuda_rng_state = paddle.get_cuda_rng_state()
    orig_cuda_rng_tracker = get_rng_state_tracker().get_states_tracker()

    paddle.set_cuda_rng_state(rng_state)
    get_rng_state_tracker().set_states_tracker(tracker)
    try:
        yield
    finally:
        paddle.set_cuda_rng_state(orig_cuda_rng_state)
        get_rng_state_tracker().set_states_tracker(orig_cuda_rng_tracker)
    def test_gen_dropout_dygraph(self):
        gen = paddle.seed(12343)

        fluid.enable_dygraph()

        gen.manual_seed(111111111)
        st = paddle.get_cuda_rng_state()

        x = fluid.layers.uniform_random([2, 10],
                                        dtype="float32",
                                        min=0.0,
                                        max=1.0)
        x_again = fluid.layers.uniform_random([2, 10],
                                              dtype="float32",
                                              min=0.0,
                                              max=1.0)
        x_third = fluid.layers.uniform_random([2, 10],
                                              dtype="float32",
                                              min=0.0,
                                              max=1.0)
        print("x: {}".format(x.numpy()))
        print("x_again: {}".format(x_again.numpy()))
        x = x + x_again + x_third
        y = fluid.layers.dropout(x, 0.5)

        paddle.set_cuda_rng_state(st)

        x1 = fluid.layers.uniform_random([2, 10],
                                         dtype="float32",
                                         min=0.0,
                                         max=1.0)
        x1_again = fluid.layers.uniform_random([2, 10],
                                               dtype="float32",
                                               min=0.0,
                                               max=1.0)
        x1_third = fluid.layers.uniform_random([2, 10],
                                               dtype="float32",
                                               min=0.0,
                                               max=1.0)
        x1 = x1 + x1_again + x1_third
        y1 = fluid.layers.dropout(x1, 0.5)
        y_np = y.numpy()
        y1_np = y1.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> dropout dygraph >>>>>>>")
            self.assertTrue(np.allclose(y_np, y1_np))
    def test_generator_gaussian_random_dygraph(self):
        """Test Generator seed."""
        fluid.enable_dygraph()

        paddle.seed(12312321111)
        x = fluid.layers.gaussian_random([120], dtype="float32")
        st1 = paddle.get_cuda_rng_state()
        x1 = fluid.layers.gaussian_random([120], dtype="float32")
        paddle.set_cuda_rng_state(st1)
        x2 = fluid.layers.gaussian_random([120], dtype="float32")
        paddle.seed(12312321111)
        x3 = fluid.layers.gaussian_random([120], dtype="float32")
        x_np = x.numpy()
        x1_np = x1.numpy()
        x2_np = x2.numpy()
        x3_np = x3.numpy()

        if core.is_compiled_with_cuda():
            print(">>>>>>> gaussian random dygraph >>>>>>>")
            self.assertTrue(np.allclose(x1_np, x2_np))
            self.assertTrue(np.allclose(x_np, x3_np))