def points2bbox(self, pts, y_first=True):
        """点集转换成包围框.

        :param pts: the input points sets (fields), each points
            set (fields) is represented as 2n scalar.
        :param y_first: if y_first=True, the point set is represented as
            [y1, x1, y2, x2 ... yn, xn], otherwise the point set is
            represented as [x1, y1, x2, y2 ... xn, yn].
        :return: each points set is converting to a bbox [x1, y1, x2, y2].
        """
        pts_reshape = L.reshape(pts, (pts.shape[0], -1, 2, pts.shape[2], pts.shape[3]))
        pts_y = pts_reshape[:, :, 0, :, :] if y_first else pts_reshape[:, :, 1, :, :]
        pts_x = pts_reshape[:, :, 1, :, :] if y_first else pts_reshape[:, :, 0, :, :]
        if self.transform_method == 'minmax':
            # bbox_left = pts_x.min(dim=1, keepdim=True)[0]
            # bbox_right = pts_x.max(dim=1, keepdim=True)[0]
            # bbox_up = pts_y.min(dim=1, keepdim=True)[0]
            # bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
            # bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
            #                  dim=1)
            pass
        elif self.transform_method == 'partial_minmax':
            # pts_y = pts_y[:, :4, ...]
            # pts_x = pts_x[:, :4, ...]
            # bbox_left = pts_x.min(dim=1, keepdim=True)[0]
            # bbox_right = pts_x.max(dim=1, keepdim=True)[0]
            # bbox_up = pts_y.min(dim=1, keepdim=True)[0]
            # bbox_bottom = pts_y.max(dim=1, keepdim=True)[0]
            # bbox = torch.cat([bbox_left, bbox_up, bbox_right, bbox_bottom],
            #                  dim=1)
            pass
        elif self.transform_method == 'moment':
            pts_y_mean = L.reduce_mean(pts_y, dim=1, keep_dim=True)
            pts_x_mean = L.reduce_mean(pts_x, dim=1, keep_dim=True)
            pts_y_std = paddle.std(pts_y - pts_y_mean, axis=1, keepdim=True)
            pts_x_std = paddle.std(pts_x - pts_x_mean, axis=1, keepdim=True)
            moment_transfer = (self.moment_transfer * self.moment_mul) + (
                self.moment_transfer.detach() * (1 - self.moment_mul))
            moment_width_transfer = moment_transfer[0]
            moment_height_transfer = moment_transfer[1]
            half_width = pts_x_std * L.exp(moment_width_transfer)
            half_height = pts_y_std * L.exp(moment_height_transfer)
            bbox = L.concat([
                pts_x_mean - half_width, pts_y_mean - half_height,
                pts_x_mean + half_width, pts_y_mean + half_height
            ], axis=1)
        else:
            raise NotImplementedError
        return bbox
示例#2
0
 def static(self):
     with paddle.static.program_guard(paddle.static.Program()):
         x = paddle.data('X', self.shape, self.dtype)
         out = paddle.std(x, self.axis, self.unbiased, self.keepdim)
         exe = paddle.static.Executor(self.place)
         res = exe.run(feed={'X': self.x}, fetch_list=[out])
     return res[0]
示例#3
0
def get_logic_from_model(name):
    x, _ = load_sample_audio_text()
    model = Wav2Vec2ForCTC(name, pretrained=True)
    model.eval()
    with paddle.no_grad():
        logits = model(x)
    return float(paddle.mean(logits)), float(paddle.std(logits))
示例#4
0
 def dynamic(self, axis=None, keepdim=False, unbiased=True):
     with fluid.dygraph.guard(self._place):
         data = fluid.dygraph.to_variable(self._input)
         out = paddle.std(input=data,
                          axis=axis,
                          keepdim=keepdim,
                          unbiased=unbiased)
         return out.numpy()
示例#5
0
    def static(self, axis=None, keepdim=False, unbiased=True):
        prog = fluid.Program()
        with fluid.program_guard(prog):
            data = fluid.data(name="data",
                              dtype=self._dtype,
                              shape=[None, 3, 4, 5])
            out = prog.current_block().create_var(dtype=self._dtype,
                                                  shape=[2, 3, 4, 5])
            paddle.std(input=data,
                       axis=axis,
                       keepdim=keepdim,
                       unbiased=unbiased,
                       out=out)

        exe = fluid.Executor(self._place)
        return exe.run(feed={"data": self._input},
                       program=prog,
                       fetch_list=[out])[0]
示例#6
0
 def test_alias(self):
     paddle.disable_static()
     x = paddle.to_tensor(np.array([10, 12], 'float32'))
     out1 = paddle.std(x).numpy()
     out2 = paddle.tensor.std(x).numpy()
     out3 = paddle.tensor.stat.std(x).numpy()
     self.assertTrue(np.allclose(out1, out2))
     self.assertTrue(np.allclose(out1, out3))
     paddle.enable_static()
示例#7
0
 def forward(self, x):  # (b, c, h, w)
     b, c, h, w = x.shape
     x = paddle.reshape(x, [b * self.groups, -1, h, w])
     xn = x * self.avg_pool(x)
     xn = paddle.sum(xn, axis=1, keepdim=True)
     t = paddle.reshape(xn, [b * self.groups, -1])
     t = t - paddle.mean(t, axis=1, keepdim=True)
     std = paddle.std(t, axis=1, keepdim=True) + 1e-5
     t = t / std
     t = paddle.reshape(t, [b, self.groups, h, w])
     t = t * self.weight + self.bias
     t = paddle.reshape(t, (b * self.groups, 1, h, w))
     x = x * self.sig(t)
     x = paddle.reshape(x, (b, c, h, w))
     return x
示例#8
0
 def convertDistribution(self, x):
     mean, std = paddle.mean(x), paddle.std(x)
     y = (x - mean) * 0.2 / std
     return y.astype('float32')
示例#9
0
 def dygraph(self):
     paddle.disable_static()
     x = paddle.to_tensor(self.x)
     out = paddle.std(x, self.axis, self.unbiased, self.keepdim)
     paddle.enable_static()
     return out.numpy()