from paddle_fl.core.scheduler.agent_master import FLScheduler worker_num = 4 server_num = 1 #Define number of worker/server and the port for scheduler scheduler = FLScheduler(worker_num, server_num, port=9091) scheduler.set_sample_worker_num(4) scheduler.init_env() print("init env done.") scheduler.start_fl_training()
print("submit mpi job done.") # start scheduler and receive the ip of allocated endpoints context = zmq.Context() zmq_socket = context.socket(zmq.REP) zmq_socket.bind("tcp://{}:{}".format(current_ip, random_port)) print("binding tcp://{}:{}".format(current_ip, random_port)) all_ips_ready = False ip_list = [] scheduler = FLScheduler(int(default_dict["worker_nodes"]), int(default_dict["server_nodes"]), port=random_port, socket=zmq_socket) scheduler.set_sample_worker_num(int(default_dict["worker_nodes"])) print("going to wait all ips ready") while not all_ips_ready: message = zmq_socket.recv() group = message.split("\t") if group[0] == "ENDPOINT": ip_list.append(group[1]) zmq_socket.send("ACCEPT\t{}".format(group[1])) else: zmq_socket.send("WAIT\t0") if len(ip_list) == \
from paddle_fl.core.scheduler.agent_master import FLScheduler worker_num = 5 server_num = 1 scheduler = FLScheduler(worker_num, server_num) scheduler.set_sample_worker_num(5) scheduler.init_env() print("init env done.") scheduler.start_fl_training()