示例#1
0
import logging
import math
import time

logging.basicConfig(filename="test.log",
                    filemode="w",
                    format="%(asctime)s %(name)s:%(levelname)s:%(message)s",
                    datefmt="%d-%M-%Y %H:%M:%S",
                    level=logging.DEBUG)

trainer_id = int(sys.argv[1])  # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform scheduler IP address to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id)
place = fluid.CPUPlace()
trainer.start(place)

test_program = trainer._main_program.clone(for_test=True)

train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.mnist.train(),
                                                  buf_size=500),
                            batch_size=64)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=64)

img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[img, label], place=fluid.CPUPlace())
示例#2
0
logging.basicConfig(
    filename="test.log",
    filemode="w",
    format="%(asctime)s %(name)s:%(levelname)s:%(message)s",
    datefmt="%d-%M-%Y %H:%M:%S",
    level=logging.DEBUG)

trainer_id = int(sys.argv[1])  # trainer id for each guest
place = fluid.CPUPlace()
train_file_dir = "mid_data/node4/%d/" % trainer_id
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform the scheduler IP to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id)
place = fluid.CPUPlace()
trainer.start(place)

r = Gru4rec_Reader()
train_reader = r.reader(train_file_dir, place, batch_size=125)

output_folder = "model_node4"
epoch_i = 0
while not trainer.stop():
    epoch_i += 1
    train_step = 0
    for data in train_reader():
        #print(np.array(data['src_wordseq']))
        ret_avg_cost = trainer.run(feed=data, fetch=["mean_0.tmp_0"])
示例#3
0
BATCH_SIZE = 64

train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.mnist.train(),
                                                  buf_size=500),
                            batch_size=BATCH_SIZE)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)

trainer_num = 2
trainer_id = int(sys.argv[1])  # trainer id for each guest

job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform the scheduler IP to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer.trainer_id = trainer_id
trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id)
trainer.trainer_num = trainer_num
trainer.key_dir = "./keys/"
place = fluid.CPUPlace()
trainer.start(place)

output_folder = "fl_model"
epoch_id = 0
step_i = 0

inputs = fluid.layers.data(name='x', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='y', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[inputs, label], place=fluid.CPUPlace())
示例#4
0
    for i in range(10):
        data_dict = {}
        for i in range(3):
            data_dict[str(i)] = np.random.rand(1, 5).astype('float32')
        data_dict["label"] = np.random.randint(2, size=(1, 1)).astype('int64')
        yield data_dict


trainer_id = int(sys.argv[1])  # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform the scheduler IP to trainer
# print(job._trainer_send_program)

trainer = FLTrainerFactory().create_fl_trainer(job)
use_cuda = False
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer._current_ep = "127.0.0.1:8192"
trainer.start(place=place)
trainer._logger.setLevel(logging.DEBUG)

g = reader()
if trainer_id > 0:
    for i in range(trainer_id):
        next(g)
data = next(g)
print(data)

output_folder = "fl_model"
step_i = 0
logging.basicConfig(
    filename="test.log",
    filemode="w",
    format="%(asctime)s %(name)s:%(levelname)s:%(message)s",
    datefmt="%d-%M-%Y %H:%M:%S",
    level=logging.DEBUG)

#  Load configs
####################
trainer_id = int(args.id)  # trainer id
job_path = params["federated"]["job_path"]
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:"+ str(params["federated"]["scheduler_port"])  # Inform scheduler IP address to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer._current_ep = "127.0.0.1:{}".format(params["federated"]["seed_of_clients_port"] + trainer_id)
place = paddle.fluid.CPUPlace()
trainer.start(place)

test_program = trainer._main_program.clone(for_test = True)

#  Load data 
###############

# dataset = Time_series_loader(distributed = params["federated"]["distributed"], ts_path = params["federated"]["clients_path"], number_of_clients = params["federated"]["number_of_clients"], lookback = params["federated"]["lookback"], lookforward = params["federated"]["lookforward"])
dataset = select_data(params)

train_reader = paddle.batch(reader = dataset.train_data(client = trainer_id),
                            batch_size = params["federated"]["batch_size"])
val_reader = paddle.batch(reader=dataset.val_data(client = trainer_id), 
示例#6
0
    for i in range(1000):
        data_dict = {}
        for i in range(3):
            data_dict[str(i)] = np.random.rand(1, 5).astype('float32')
        data_dict["label"] = np.random.randint(2, size=(1, 1)).astype('int64')
        yield data_dict


trainer_id = int(sys.argv[1])  # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
#job._scheduler_ep = "127.0.0.1:9091" # Inform the scheduler IP to trainer
job._scheduler_ep = os.environ['FL_SCHEDULER_SERVICE_HOST'] + ":" + os.environ[
    'FL_SCHEDULER_SERVICE_PORT_FL_SCHEDULER']
trainer = FLTrainerFactory().create_fl_trainer(job)
#trainer._current_ep = "127.0.0.1:{}".format(9000+trainer_id)
trainer._current_ep = os.environ['TRAINER0_SERVICE_HOST'] + ":" + os.environ[
    'TRAINER0_SERVICE_PORT_TRAINER0']
place = fluid.CPUPlace()
trainer.start(place)
print(trainer._scheduler_ep, trainer._current_ep)
output_folder = "fl_model"
epoch_id = 0
while not trainer.stop():
    print("batch %d start train" % (epoch_id))
    train_step = 0
    for data in reader():
        trainer.run(feed=data, fetch=[])
        train_step += 1
        if train_step == trainer._step:
示例#7
0
import logging
import math
import time

logging.basicConfig(filename="test.log",
                    filemode="w",
                    format="%(asctime)s %(name)s:%(levelname)s:%(message)s",
                    datefmt="%d-%M-%Y %H:%M:%S",
                    level=logging.DEBUG)

trainer_id = int(sys.argv[1])  # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform scheduler IP address to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id)
place = fluid.CPUPlace()
trainer.start(place)
test_program = trainer._main_program.clone(for_test=True)

train_reader = paddle.batch(paddle.reader.shuffle(paddle.dataset.mnist.train(),
                                                  buf_size=500),
                            batch_size=64)
test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=64)

input = fluid.layers.data(name='input', shape=[1, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
feeder = fluid.DataFeeder(feed_list=[input, label], place=fluid.CPUPlace())

示例#8
0
        data_loader = Reader(coco_loader,
                             sample_transforms=sample_trans,
                             batch_transforms=batch_trans,
                             batch_size=1,
                             shuffle=True,
                             drop_empty=True,
                             inputs_def=inputs_def)()

        return data_loader


job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform scheduler IP address to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id)
trainer.start(fluid.CUDAPlace(trainer_id))

test_program = trainer._main_program.clone(for_test=True)

image = fluid.layers.data(name='image',
                          shape=[3, None, None],
                          dtype='float32',
                          lod_level=0)
im_info = fluid.layers.data(name='im_info',
                            shape=[None, 3],
                            dtype='float32',
                            lod_level=0)
im_id = fluid.layers.data(name='im_id',
                          shape=[None, 1],
示例#9
0
def reader():
    for i in range(1000):
        data_dict = {}
        for i in range(3):
            data_dict[str(i)] = np.random.rand(1, 5).astype('float32')
        data_dict["label"] = np.random.randint(2, size=(1, 1)).astype('int64')
        yield data_dict


trainer_id = int(sys.argv[1])  # trainer id for each guest
job_path = "fl_job_config"
job = FLRunTimeJob()
job.load_trainer_job(job_path, trainer_id)
job._scheduler_ep = "127.0.0.1:9091"  # Inform the scheduler IP to trainer
trainer = FLTrainerFactory().create_fl_trainer(job)
trainer._current_ep = "127.0.0.1:{}".format(9000 + trainer_id)
place = fluid.CPUPlace()
trainer.start(place)
print("scheduler_ep is {}, current_ep is {}".format(trainer._scheduler_ep,
                                                    trainer._current_ep))
epoch_id = 0
while not trainer.stop():
    if epoch_id > 10:
        break
    print("{} epoch {} start train".format(
        time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(time.time())),
        epoch_id))
    train_step = 0
    for data in reader():
        trainer.run(feed=data, fetch=[])