class TextSystemHelper(TextSystem): def __init__(self, args): self.text_detector = TextDetectorHelper(args) self.text_recognizer = TextRecognizerHelper(args) self.use_angle_cls = args.use_angle_cls if self.use_angle_cls: self.clas_client = Debugger() self.clas_client.load_model_config(global_args.cls_server_dir, gpu=True, profile=False) self.text_classifier = TextClassifierHelper(args) self.det_client = Debugger() self.det_client.load_model_config(global_args.det_server_dir, gpu=True, profile=False) self.fetch = [ "save_infer_model/scale_0.tmp_0", "save_infer_model/scale_1.tmp_0" ] def preprocess(self, img): feed, fetch, self.tmp_args = self.text_detector.preprocess(img) fetch_map = self.det_client.predict(feed, fetch) outputs = [fetch_map[x] for x in fetch] dt_boxes = self.text_detector.postprocess(outputs, self.tmp_args) if dt_boxes is None: return None, None img_crop_list = [] dt_boxes = sorted_boxes(dt_boxes) self.dt_boxes = dt_boxes for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) img_crop = self.get_rotate_crop_image(img, tmp_box) img_crop_list.append(img_crop) if self.use_angle_cls: feed, fetch, self.tmp_args = self.text_classifier.preprocess( img_crop_list) fetch_map = self.clas_client.predict(feed, fetch) outputs = [fetch_map[x] for x in self.text_classifier.fetch] for x in fetch_map.keys(): if ".lod" in x: self.tmp_args[x] = fetch_map[x] img_crop_list, _ = self.text_classifier.postprocess( outputs, self.tmp_args) feed, fetch, self.tmp_args = self.text_recognizer.preprocess( img_crop_list) return feed, self.fetch, self.tmp_args def postprocess(self, outputs, args): return self.text_recognizer.postprocess(outputs, args)
class OCRService(WebService): def init_det_debugger(self, det_model_config): self.det_preprocess = Sequential([ ResizeByFactor(32, 960), Div(255), Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), Transpose((2, 0, 1)) ]) self.det_client = Debugger() if sys.argv[1] == 'gpu': self.det_client.load_model_config(det_model_config, gpu=True, profile=False) elif sys.argv[1] == 'cpu': self.det_client.load_model_config(det_model_config, gpu=False, profile=False) self.ocr_reader = OCRReader() def preprocess(self, feed=[], fetch=[]): data = base64.b64decode(feed[0]["image"].encode('utf8')) data = np.fromstring(data, np.uint8) im = cv2.imdecode(data, cv2.IMREAD_COLOR) ori_h, ori_w, _ = im.shape det_img = self.det_preprocess(im) _, new_h, new_w = det_img.shape det_img = det_img[np.newaxis, :] det_img = det_img.copy() det_out = self.det_client.predict(feed={"image": det_img}, fetch=["concat_1.tmp_0"]) filter_func = FilterBoxes(10, 10) post_func = DBPostProcess({ "thresh": 0.3, "box_thresh": 0.5, "max_candidates": 1000, "unclip_ratio": 1.5, "min_size": 3 }) sorted_boxes = SortedBoxes() ratio_list = [float(new_h) / ori_h, float(new_w) / ori_w] dt_boxes_list = post_func(det_out["concat_1.tmp_0"], [ratio_list]) dt_boxes = filter_func(dt_boxes_list[0], [ori_h, ori_w]) dt_boxes = sorted_boxes(dt_boxes) get_rotate_crop_image = GetRotateCropImage() img_list = [] max_wh_ratio = 0 for i, dtbox in enumerate(dt_boxes): boximg = get_rotate_crop_image(im, dt_boxes[i]) img_list.append(boximg) h, w = boximg.shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) if len(img_list) == 0: return [], [] _, w, h = self.ocr_reader.resize_norm_img(img_list[0], max_wh_ratio).shape imgs = np.zeros((len(img_list), 3, w, h)).astype('float32') for id, img in enumerate(img_list): norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio) imgs[id] = norm_img feed = {"image": imgs.copy()} fetch = ["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"] return feed, fetch def postprocess(self, feed={}, fetch=[], fetch_map=None): rec_res = self.ocr_reader.postprocess(fetch_map, with_score=True) res_lst = [] for res in rec_res: res_lst.append(res[0]) res = {"res": res_lst} return res