def new_log_interval_event(self, run_states): """ PaddleHub default handler for log_interval_event, it will complete visualization. Args: run_states (object): the results in train phase """ scores, avg_loss, run_speed = self._calculate_metrics(run_states) self.tb_writer.add_scalar(tag="Loss_{}".format(self.phase), scalar_value=avg_loss, global_step=self._envs['train'].current_step) log_scores = "" s = [self.current_step] for metric in scores: self.tb_writer.add_scalar( tag="{}_{}".format(metric, self.phase), scalar_value=scores[metric], global_step=self._envs['train'].current_step) log_scores += "%s=%.5f " % (metric, scores[metric]) s.append(scores[metric]) # train[metric].add_record(self.current_step, scores[metric]) logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" % (self.current_step, self.max_train_steps, avg_loss, log_scores, run_speed)) s.append(avg_loss) # train_loss.add_record(self.current_step, avg_loss) s = [str(x) for x in s] with open('./work/log/%s_train%s.txt' % (args.do_model, id), 'a', encoding='utf-8') as f: f.write(','.join(s) + '\n')
def _default_log_interval_event(self, run_states): scores, avg_loss, run_speed = self._calculate_metrics(run_states) self.tb_writer.add_scalar(tag="Loss_{}".format(self.phase), scalar_value=avg_loss, global_step=self._envs['train'].current_step) log_scores = "" for metric in scores: self.tb_writer.add_scalar( tag="{}_{}".format(metric, self.phase), scalar_value=scores[metric], global_step=self._envs['train'].current_step) log_scores += "%s=%.5f " % (metric, scores[metric]) logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" % (self.current_step, self.max_train_steps, avg_loss, log_scores, run_speed))
def _default_log_interval_event(self, run_states): """ PaddleHub default handler for log_interval_event, it will complete visualization. Args: run_states (object): the results in train phase """ scores, avg_loss, run_speed = self._calculate_metrics(run_states) self.vdl_writer.add_scalar(tag="Loss_{}".format(self.phase), value=avg_loss, step=self._envs['train'].current_step) log_scores = "" for metric in scores: self.vdl_writer.add_scalar(tag="{}_{}".format(metric, self.phase), value=scores[metric], step=self._envs['train'].current_step) log_scores += "%s=%.5f " % (metric, scores[metric]) logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" % (self.current_step, self.max_train_steps, avg_loss, log_scores, run_speed))
def new_log_interval_event(self, run_states): scores, avg_loss, run_speed = self._calculate_metrics(run_states) self.tb_writer.add_scalar(tag="Loss_{}".format(self.phase), scalar_value=avg_loss, global_step=self._envs['train'].current_step) log_scores = "" log = [self._envs['train'].current_step, avg_loss] for metric in scores: self.tb_writer.add_scalar( tag="{}_{}".format(metric, self.phase), scalar_value=scores[metric], global_step=self._envs['train'].current_step) log_scores += "%s=%.5f " % (metric, scores[metric]) log.append(scores[metric]) logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" % (self.current_step, self.max_train_steps, avg_loss, log_scores, run_speed)) log = [str(x) for x in log] with open('./work/log/cls_log_{}train.txt'.format(train_i), 'a', encoding='utf-8') as f: f.write(','.join(log) + '\n')