def get_dataloader(self, context, dataset_name, dataloader): name = "dataset." + dataset_name + "." sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip() dense_slots = envs.get_global_env(name + "dense_slots", "").strip() batch_size = envs.get_global_env(name + "batch_size") reader_class = envs.get_global_env(name + "data_converter") reader_class_name = envs.get_global_env(name + "reader_class_name", "Reader") if sparse_slots == "" and dense_slots == "": reader = dataloader_instance.dataloader_by_name( reader_class, dataset_name, context["config_yaml"], context, reader_class_name=reader_class_name) reader_class = envs.lazy_instance_by_fliename( reader_class, reader_class_name) reader_ins = reader_class(context["config_yaml"]) else: reader = dataloader_instance.slotdataloader_by_name( "", dataset_name, context["config_yaml"], context) reader_ins = SlotReader(context["config_yaml"]) if hasattr(reader_ins, 'generate_batch_from_trainfiles'): dataloader.set_sample_list_generator(reader) elif hasattr(reader_ins, 'batch_tensor_creator'): dataloader.set_batch_generator(reader) else: dataloader.set_sample_generator(reader, batch_size) return dataloader
def slotdataloader(readerclass, train, yaml_file, context): if train == "TRAIN": reader_name = "SlotReader" namespace = "train.reader" data_path = get_global_env("train_data_path", None, namespace) else: reader_name = "SlotReader" namespace = "evaluate.reader" data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] if context["engine"] == EngineMode.LOCAL_CLUSTER: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) print("file_list: {}".format(files)) sparse = get_global_env("sparse_slots", "#", namespace) if sparse == "": sparse = "#" dense = get_global_env("dense_slots", "#", namespace) if dense == "": dense = "#" padding = get_global_env("padding", 0, namespace) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader
def _get_dataloader(self, state="TRAIN"): if state == "TRAIN": dataloader = self.model._data_loader namespace = "train.reader" class_name = "TrainReader" else: dataloader = self.model._infer_data_loader namespace = "evaluate.reader" class_name = "EvaluateReader" sparse_slots = envs.get_global_env("sparse_slots", None, namespace) dense_slots = envs.get_global_env("dense_slots", None, namespace) batch_size = envs.get_global_env("batch_size", None, namespace) print("batch_size: {}".format(batch_size)) if sparse_slots is None and dense_slots is None: reader_class = envs.get_global_env("class", None, namespace) reader = dataloader_instance.dataloader(reader_class, state, self._config_yaml) reader_class = envs.lazy_instance_by_fliename( reader_class, class_name) reader_ins = reader_class(self._config_yaml) else: reader = dataloader_instance.slotdataloader( "", state, self._config_yaml) reader_ins = SlotReader(self._config_yaml) if hasattr(reader_ins, 'generate_batch_from_trainfiles'): dataloader.set_sample_list_generator(reader) else: dataloader.set_sample_generator(reader, batch_size) debug_mode = envs.get_global_env("reader_debug_mode", False, namespace) if debug_mode: print("--- DataLoader Debug Mode Begin , show pre 10 data ---") for idx, line in enumerate(reader()): print(line) if idx >= 9: break print("--- DataLoader Debug Mode End , show pre 10 data ---") exit(0) return dataloader
def slotdataloader_by_name(readerclass, dataset_name, yaml_file): name = "dataset." + dataset_name + "." reader_name = "SlotReader" data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) files = [str(data_path) + "/%s" % x for x in os.listdir(data_path)] sparse = get_global_env(name + "sparse_slots", "#") if sparse == "": sparse = "#" dense = get_global_env(name + "dense_slots", "#") if dense == "": dense = "#" padding = get_global_env(name + "padding", 0) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader
def _get_dataloader(self, dataset_name, dataloader): name = "dataset." + dataset_name + "." thread_num = envs.get_global_env(name + "thread_num") batch_size = envs.get_global_env(name + "batch_size") reader_class = envs.get_global_env(name + "data_converter") abs_dir = os.path.dirname(os.path.abspath(__file__)) sparse_slots = envs.get_global_env(name + "sparse_slots", "").strip() dense_slots = envs.get_global_env(name + "dense_slots", "").strip() if sparse_slots == "" and dense_slots == "": reader = dataloader_instance.dataloader_by_name( reader_class, dataset_name, self._config_yaml) reader_class = envs.lazy_instance_by_fliename( reader_class, "TrainReader") reader_ins = reader_class(self._config_yaml) else: reader = dataloader_instance.slotdataloader_by_name( "", dataset_name, self._config_yaml) reader_ins = SlotReader(self._config_yaml) if hasattr(reader_ins, 'generate_batch_from_trainfiles'): dataloader.set_sample_list_generator(reader) else: dataloader.set_sample_generator(reader, batch_size) return dataloader
from paddlerec.core.reader import SlotReader from paddlerec.core.utils import envs if len(sys.argv) < 4: raise ValueError("reader only accept 3 argument: 1. reader_class 2.train/evaluate/slotreader 3.yaml_abs_path") reader_package = sys.argv[1] if sys.argv[2].upper() == "TRAIN": reader_name = "TrainReader" elif sys.argv[2].upper() == "EVALUATE": reader_name = "EvaluateReader" else: reader_name = "SlotReader" namespace = sys.argv[4] sparse_slots = sys.argv[5].replace("#", " ") dense_slots = sys.argv[6].replace("#", " ") padding = int(sys.argv[7]) yaml_abs_path = sys.argv[3] if reader_name != "SlotReader": reader_class = lazy_instance_by_fliename(reader_package, reader_name) reader = reader_class(yaml_abs_path) reader.init() reader.run_from_stdin() else: reader = SlotReader(yaml_abs_path) reader.init(sparse_slots, dense_slots, padding) reader.run_from_stdin()
def slotdataloader_by_name(readerclass, dataset_name, yaml_file, context): name = "dataset." + dataset_name + "." reader_name = "SlotReader" data_path = get_global_env(name + "data_path") if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist(hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}" .format(hidden_file_list)) files.sort() # for local cluster: discard some files if files cannot be divided equally between GPUs if (context["device"] == "GPU") and "PADDLEREC_GPU_NUMS" in os.environ: selected_gpu_nums = int(os.getenv("PADDLEREC_GPU_NUMS")) discard_file_nums = len(files) % selected_gpu_nums if (discard_file_nums != 0): warnings.warn( "Because files cannot be divided equally between GPUs,discard these files:{}" .format(files[-discard_file_nums:])) files = files[:len(files) - discard_file_nums] need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) context["file_list"] = files sparse = get_global_env(name + "sparse_slots", "#") if sparse == "": sparse = "#" dense = get_global_env(name + "dense_slots", "#") if dense == "": dense = "#" padding = get_global_env(name + "padding", 0) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader
def slotdataloader(readerclass, train, yaml_file, context): if train == "TRAIN": reader_name = "SlotReader" namespace = "train.reader" data_path = get_global_env("train_data_path", None, namespace) else: reader_name = "SlotReader" namespace = "evaluate.reader" data_path = get_global_env("test_data_path", None, namespace) if data_path.startswith("paddlerec::"): package_base = get_runtime_environ("PACKAGE_BASE") assert package_base is not None data_path = os.path.join(package_base, data_path.split("::")[1]) hidden_file_list, files = check_filelist(hidden_file_list=[], data_file_list=[], train_data_path=data_path) if (hidden_file_list is not None): print( "Warning:please make sure there are no hidden files in the dataset folder and check these hidden files:{}" .format(hidden_file_list)) files.sort() need_split_files = False if context["engine"] == EngineMode.LOCAL_CLUSTER: # for local cluster: split files for multi process need_split_files = True elif context["engine"] == EngineMode.CLUSTER and context[ "cluster_type"] == "K8S": # for k8s mount mode, split files for every node need_split_files = True if need_split_files: files = split_files(files, context["fleet"].worker_index(), context["fleet"].worker_num()) sparse = get_global_env("sparse_slots", "#", namespace) if sparse == "": sparse = "#" dense = get_global_env("dense_slots", "#", namespace) if dense == "": dense = "#" padding = get_global_env("padding", 0, namespace) reader = SlotReader(yaml_file) reader.init(sparse, dense, int(padding)) def gen_reader(): for file in files: with open(file, 'r') as f: for line in f: line = line.rstrip('\n') iter = reader.generate_sample(line) for parsed_line in iter(): if parsed_line is None: continue else: values = [] for pased in parsed_line: values.append(pased[1]) yield values def gen_batch_reader(): return reader.generate_batch_from_trainfiles(files) if hasattr(reader, 'generate_batch_from_trainfiles'): return gen_batch_reader() return gen_reader