def __call__(self, data): mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] data['img'] = functional.normalize(data['img'], mean, std) if 'fg' in data.get('gt_fields', []): data['fg'] = functional.normalize(data['fg'], mean, std) if 'bg' in data.get('gt_fields', []): data['bg'] = functional.normalize(data['bg'], mean, std) return data
def __call__(self, im, label=None): """ Args: im (np.ndarray): The Image data. label (np.ndarray, optional): The label data. Default: None. Returns: (tuple). When label is None, it returns (im, ), otherwise it returns (im, label). """ mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im = functional.normalize(im, mean, std) if label is None: return (im, ) else: return (im, label)
def __call__(self, im, im_info=None, label=None): """ Args: im (np.ndarray): The Image data. im_info (dict, optional): A dictionary maintains image info before this transformation. Default: None. label (np.ndarray, optional): The label data. Default: None. Returns: (tuple). When label is None, it returns (im, im_info), otherwise it returns (im, im_info, label). """ mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im = functional.normalize(im, mean, std) if label is None: return (im, im_info) else: return (im, im_info, label)
def __call__(self, data): mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] data['img'] = functional.normalize(data['img'], mean, std) return data