示例#1
0
def search_mobilenetv2(config, args, image_size, is_server=True):
    if is_server:
        ### start a server and a client
        rl_nas = RLNAS(
            key='ddpg',
            configs=config,
            is_sync=False,
            obs_dim=26,  ### step + length_of_token
            server_addr=(args.server_address, args.port))
    else:
        ### start a client
        rl_nas = RLNAS(key='ddpg',
                       configs=config,
                       is_sync=False,
                       obs_dim=26,
                       server_addr=(args.server_address, args.port),
                       is_server=False)

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        if step == 0:
            action_prev = [1. for _ in rl_nas.range_tables]
        else:
            action_prev = rl_nas.tokens[0]
        obs = [step]
        obs.extend(action_prev)
        archs = rl_nas.next_archs(obs=obs)[0][0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.batch(paddle.reader.shuffle(
                paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                                        batch_size=args.batch_size,
                                        drop_last=True)

            test_reader = paddle.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.batch(imagenet_reader.train(),
                                        batch_size=args.batch_size,
                                        drop_last=True)
            test_reader = paddle.batch(imagenet_reader.val(),
                                       batch_size=args.batch_size,
                                       drop_last=False)

        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        test_loader.set_sample_list_generator(test_reader, places=place)

        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(loss_name=avg_cost.name,
                                              build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'
                        .format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'
                .format(step, batch_id, batch_reward[0], batch_reward[1],
                        batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        obs = np.expand_dims(obs, axis=0).astype('float32')
        actions = rl_nas.tokens
        obs_next = [step + 1]
        obs_next.extend(actions[0])
        obs_next = np.expand_dims(obs_next, axis=0).astype('float32')

        if step == args.search_steps - 1:
            terminal = np.expand_dims([True], axis=0).astype(np.bool)
        else:
            terminal = np.expand_dims([False], axis=0).astype(np.bool)
        rl_nas.reward(np.expand_dims(np.float32(finally_reward[1]), axis=0),
                      obs=obs,
                      actions=actions.astype('float32'),
                      obs_next=obs_next,
                      terminal=terminal)

        if step == 2:
            sys.exit(0)
示例#2
0
def search_mobilenetv2(config, args, image_size, is_server=True):
    places = static.cuda_places() if args.use_gpu else static.cpu_places()
    place = places[0]
    if is_server:
        ### start a server and a client
        rl_nas = RLNAS(key='lstm',
                       configs=config,
                       is_sync=False,
                       server_addr=(args.server_address, args.port),
                       controller_batch_size=1,
                       controller_decay_steps=1000,
                       controller_decay_rate=0.8,
                       lstm_num_layers=1,
                       hidden_size=10,
                       temperature=1.0)
    else:
        ### start a client
        rl_nas = RLNAS(key='lstm',
                       configs=config,
                       is_sync=False,
                       server_addr=(args.server_address, args.port),
                       lstm_num_layers=1,
                       hidden_size=10,
                       temperature=1.0,
                       controller_batch_size=1,
                       controller_decay_steps=1000,
                       controller_decay_rate=0.8,
                       is_server=False)

    image_shape = [3, image_size, image_size]
    if args.data == 'cifar10':
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.Cifar10(mode='train',
                                                       transform=transform,
                                                       backend='cv2')
        val_dataset = paddle.vision.datasets.Cifar10(mode='test',
                                                     transform=transform,
                                                     backend='cv2')

    elif args.data == 'imagenet':
        train_dataset = imagenet_reader.ImageNetDataset(mode='train')
        val_dataset = imagenet_reader.ImageNetDataset(mode='val')

    for step in range(args.search_steps):
        archs = rl_nas.next_archs(1)[0][0]

        train_program = static.Program()
        test_program = static.Program()
        startup_program = static.Program()
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, train_dataset, archs,
            args, places)

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            val_dataset,
            archs,
            args,
            place,
            is_test=True)
        test_program = test_program.clone(for_test=True)

        exe = static.Executor(place)
        exe.run(startup_program)

        build_strategy = static.BuildStrategy()
        train_compiled_program = static.CompiledProgram(
            train_program).with_data_parallel(loss_name=avg_cost.name,
                                              build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'
                        .format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'
                .format(step, batch_id, batch_reward[0], batch_reward[1],
                        batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        rl_nas.reward(np.float32(finally_reward[1]))
def search_mobilenetv2(config, args, image_size, is_server=True):
    if is_server:
        ### start a server and a client
        rl_nas = RLNAS(key='lstm',
                       configs=config,
                       is_sync=False,
                       server_addr=(args.server_address, args.port),
                       controller_batch_size=1,
                       controller_decay_steps=1000,
                       controller_decay_rate=0.8,
                       lstm_num_layers=1,
                       hidden_size=10,
                       temperature=1.0)
    else:
        ### start a client
        rl_nas = RLNAS(key='lstm',
                       configs=config,
                       is_sync=False,
                       server_addr=(args.server_address, args.port),
                       lstm_num_layers=1,
                       hidden_size=10,
                       temperature=1.0,
                       controller_batch_size=1,
                       controller_decay_steps=1000,
                       controller_decay_rate=0.8,
                       is_server=False)

    image_shape = [3, image_size, image_size]
    for step in range(args.search_steps):
        archs = rl_nas.next_archs(1)[0][0]

        train_program = fluid.Program()
        test_program = fluid.Program()
        startup_program = fluid.Program()
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, archs, args)

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            archs,
            args,
            is_test=True)
        test_program = test_program.clone(for_test=True)

        place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_program)

        if args.data == 'cifar10':
            train_reader = paddle.fluid.io.batch(paddle.reader.shuffle(
                paddle.dataset.cifar.train10(cycle=False), buf_size=1024),
                                                 batch_size=args.batch_size,
                                                 drop_last=True)

            test_reader = paddle.fluid.io.batch(
                paddle.dataset.cifar.test10(cycle=False),
                batch_size=args.batch_size,
                drop_last=False)
        elif args.data == 'imagenet':
            train_reader = paddle.fluid.io.batch(imagenet_reader.train(),
                                                 batch_size=args.batch_size,
                                                 drop_last=True)
            test_reader = paddle.fluid.io.batch(imagenet_reader.val(),
                                                batch_size=args.batch_size,
                                                drop_last=False)

        train_loader.set_sample_list_generator(
            train_reader,
            places=fluid.cuda_places() if args.use_gpu else fluid.cpu_places())
        test_loader.set_sample_list_generator(test_reader, places=place)

        build_strategy = fluid.BuildStrategy()
        train_compiled_program = fluid.CompiledProgram(
            train_program).with_data_parallel(loss_name=avg_cost.name,
                                              build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'
                        .format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'
                .format(step, batch_id, batch_reward[0], batch_reward[1],
                        batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        rl_nas.reward(np.float32(finally_reward[1]))
def search_mobilenetv2(config, args, image_size, is_server=True):
    places = static.cuda_places() if args.use_gpu else static.cpu_places()
    place = places[0]
    if is_server:
        ### start a server and a client
        rl_nas = RLNAS(
            key='ddpg',
            configs=config,
            is_sync=False,
            obs_dim=26,  ### step + length_of_token
            server_addr=(args.server_address, args.port))
    else:
        ### start a client
        rl_nas = RLNAS(key='ddpg',
                       configs=config,
                       is_sync=False,
                       obs_dim=26,
                       server_addr=(args.server_address, args.port),
                       is_server=False)

    image_shape = [3, image_size, image_size]
    if args.data == 'cifar10':
        transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
        train_dataset = paddle.vision.datasets.Cifar10(mode='train',
                                                       transform=transform,
                                                       backend='cv2')
        val_dataset = paddle.vision.datasets.Cifar10(mode='test',
                                                     transform=transform,
                                                     backend='cv2')

    elif args.data == 'imagenet':
        train_dataset = imagenet_reader.ImageNetDataset(mode='train')
        val_dataset = imagenet_reader.ImageNetDataset(mode='val')

    for step in range(args.search_steps):
        if step == 0:
            action_prev = [1. for _ in rl_nas.range_tables]
        else:
            action_prev = rl_nas.tokens[0]
        obs = [step]
        obs.extend(action_prev)
        archs = rl_nas.next_archs(obs=obs)[0][0]

        train_program = static.Program()
        test_program = static.Program()
        startup_program = static.Program()
        train_loader, avg_cost, acc_top1, acc_top5 = build_program(
            train_program, startup_program, image_shape, train_dataset, archs,
            args, places)

        test_loader, test_avg_cost, test_acc_top1, test_acc_top5 = build_program(
            test_program,
            startup_program,
            image_shape,
            val_dataset,
            archs,
            args,
            place,
            is_test=True)
        test_program = test_program.clone(for_test=True)

        exe = static.Executor(place)
        exe.run(startup_program)

        build_strategy = static.BuildStrategy()
        train_compiled_program = static.CompiledProgram(
            train_program).with_data_parallel(loss_name=avg_cost.name,
                                              build_strategy=build_strategy)
        for epoch_id in range(args.retain_epoch):
            for batch_id, data in enumerate(train_loader()):
                fetches = [avg_cost.name]
                s_time = time.time()
                outs = exe.run(train_compiled_program,
                               feed=data,
                               fetch_list=fetches)[0]
                batch_time = time.time() - s_time
                if batch_id % 10 == 0:
                    _logger.info(
                        'TRAIN: steps: {}, epoch: {}, batch: {}, cost: {}, batch_time: {}ms'
                        .format(step, epoch_id, batch_id, outs[0], batch_time))

        reward = []
        for batch_id, data in enumerate(test_loader()):
            test_fetches = [
                test_avg_cost.name, test_acc_top1.name, test_acc_top5.name
            ]
            batch_reward = exe.run(test_program,
                                   feed=data,
                                   fetch_list=test_fetches)
            reward_avg = np.mean(np.array(batch_reward), axis=1)
            reward.append(reward_avg)

            _logger.info(
                'TEST: step: {}, batch: {}, avg_cost: {}, acc_top1: {}, acc_top5: {}'
                .format(step, batch_id, batch_reward[0], batch_reward[1],
                        batch_reward[2]))

        finally_reward = np.mean(np.array(reward), axis=0)
        _logger.info(
            'FINAL TEST: avg_cost: {}, acc_top1: {}, acc_top5: {}'.format(
                finally_reward[0], finally_reward[1], finally_reward[2]))

        obs = np.expand_dims(obs, axis=0).astype('float32')
        actions = rl_nas.tokens
        obs_next = [step + 1]
        obs_next.extend(actions[0])
        obs_next = np.expand_dims(obs_next, axis=0).astype('float32')

        if step == args.search_steps - 1:
            terminal = np.expand_dims([True], axis=0).astype(np.bool)
        else:
            terminal = np.expand_dims([False], axis=0).astype(np.bool)
        rl_nas.reward(np.expand_dims(np.float32(finally_reward[1]), axis=0),
                      obs=obs,
                      actions=actions.astype('float32'),
                      obs_next=obs_next,
                      terminal=terminal)

        if step == 2:
            sys.exit(0)
示例#5
0
class TestRLNAS(StaticCase):
    def setUp(self):
        paddle.enable_static()
        self.init_test_case()
        port = np.random.randint(8337, 8773)
        self.rlnas = RLNAS(
            key='lstm',
            configs=self.configs,
            server_addr=("", port),
            is_sync=False,
            controller_batch_size=1,
            lstm_num_layers=1,
            hidden_size=10,
            temperature=1.0,
            save_controller=False)

    def init_test_case(self):
        self.configs = [('MobileNetV2BlockSpace', {'block_mask': [0]})]
        self.filter_num = np.array([
            3, 4, 8, 12, 16, 24, 32, 48, 64, 80, 96, 128, 144, 160, 192, 224,
            256, 320, 384, 512
        ])
        self.k_size = np.array([3, 5])
        self.multiply = np.array([1, 2, 3, 4, 5, 6])
        self.repeat = np.array([1, 2, 3, 4, 5, 6])

    def check_chnum_convnum(self, program, current_tokens):
        channel_exp = self.multiply[current_tokens[0]]
        filter_num = self.filter_num[current_tokens[1]]
        repeat_num = self.repeat[current_tokens[2]]

        conv_list, ch_pro = compute_op_num(program)
        ### assert conv number
        self.assertTrue((repeat_num * 3) == len(
            conv_list
        ), "the number of conv is NOT match, the number compute from token: {}, actual conv number: {}".
                        format(repeat_num * 3, len(conv_list)))

        ### assert number of channels
        ch_token = []
        init_ch_num = 32
        for i in range(repeat_num):
            ch_token.append(init_ch_num * channel_exp)
            ch_token.append(init_ch_num * channel_exp)
            ch_token.append(filter_num)
            init_ch_num = filter_num

        self.assertTrue(
            str(ch_token) == str(ch_pro),
            "channel num is WRONG, channel num from token is {}, channel num come fom program is {}".
            format(str(ch_token), str(ch_pro)))

    def test_all_function(self):
        ### unittest for next_archs
        next_program = fluid.Program()
        startup_program = fluid.Program()
        token2arch_program = fluid.Program()

        with fluid.program_guard(next_program, startup_program):
            inputs = fluid.data(
                name='input', shape=[None, 3, 32, 32], dtype='float32')
            archs = self.rlnas.next_archs(1)[0]
            current_tokens = self.rlnas.tokens
            for arch in archs:
                output = arch(inputs)
                inputs = output
        self.check_chnum_convnum(next_program, current_tokens[0])

        ### unittest for reward
        self.assertTrue(self.rlnas.reward(float(1.0)), "reward is False")

        ### uniitest for tokens2arch
        with fluid.program_guard(token2arch_program, startup_program):
            inputs = fluid.data(
                name='input', shape=[None, 3, 32, 32], dtype='float32')
            arch = self.rlnas.tokens2arch(self.rlnas.tokens[0])
            for arch in archs:
                output = arch(inputs)
                inputs = output
        self.check_chnum_convnum(token2arch_program, self.rlnas.tokens[0])

    def test_final_archs(self):
        ### unittest for final_archs
        final_program = fluid.Program()
        final_startup_program = fluid.Program()
        with fluid.program_guard(final_program, final_startup_program):
            inputs = fluid.data(
                name='input', shape=[None, 3, 32, 32], dtype='float32')
            archs = self.rlnas.final_archs(1)[0]
            current_tokens = self.rlnas.tokens
            for arch in archs:
                output = arch(inputs)
                inputs = output
        self.check_chnum_convnum(final_program, current_tokens[0])