def train(model_dir, sensitivities_file, eval_metric_loss): # 定义训练和验证时的transforms train_transforms = transforms.Compose([ transforms.MixupImage(mixup_epoch=250), transforms.RandomDistort(), transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize(target_size=608, interp='RANDOM'), transforms.RandomHorizontalFlip(), transforms.Normalize() ]) eval_transforms = transforms.Compose([ transforms.Resize(target_size=608, interp='CUBIC'), transforms.Normalize() ]) # 定义训练和验证所用的数据集 train_dataset = pdx.datasets.VOCDetection( data_dir='dataset', file_list='dataset/train_list.txt', label_list='dataset/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection(data_dir='dataset', file_list='dataset/val_list.txt', label_list='dataset/labels.txt', transforms=eval_transforms) if model_dir is None: # 使用imagenet数据集上的预训练权重 pretrain_weights = "IMAGENET" else: assert os.path.isdir(model_dir), "Path {} is not a directory".format( model_dir) pretrain_weights = model_dir save_dir = "output/yolov3_mobile" if sensitivities_file is not None: if sensitivities_file != 'DEFAULT': assert os.path.exists( sensitivities_file), "Path {} not exist".format( sensitivities_file) save_dir = "output/yolov3_mobile_prune" num_classes = len(train_dataset.labels) model = pdx.det.YOLOv3(num_classes=num_classes) model.train(num_epochs=400, train_dataset=train_dataset, train_batch_size=10, eval_dataset=eval_dataset, learning_rate=0.0001, lr_decay_epochs=[310, 350], pretrain_weights=pretrain_weights, save_dir=save_dir, use_vdl=True, sensitivities_file=sensitivities_file, eval_metric_loss=eval_metric_loss)
base = './data/' import os import paddlex as pdx from paddlex.det import transforms train_transforms = transforms.Compose([ transforms.MixupImage(mixup_epoch=250), transforms.RandomDistort(), transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize(target_size=512, interp='RANDOM'), transforms.RandomHorizontalFlip(), transforms.Normalize(), ]) eval_transforms = transforms.Compose([ transforms.Resize(target_size=512, interp='CUBIC'), transforms.Normalize(), ]) train_dataset = pdx.datasets.VOCDetection(data_dir=base, file_list=os.path.join( base, 'train.txt'), label_list='./data/labels.txt', transforms=train_transforms, shuffle=True) eval_dataset = pdx.datasets.VOCDetection(data_dir=base, file_list=os.path.join( base, 'valid.txt'), transforms=eval_transforms, label_list='./data/labels.txt')
# eval_transforms = transforms.Compose([ # transforms.Resize([1920, 1080]), transforms.Normalize() # ]) # train_transforms = t.Compose([t.ComposedYOLOv3Transforms("train")]) # eval_transforms = t.Compose([t.ComposedYOLOv3Transforms("eval")]) width = 255 height = 255 mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] epoch_num = 100 train_transforms = t.Compose([ t.RandomHorizontalFlip(), t.RandomExpand(), t.RandomDistort(), # t.MixupImage(mixup_epoch=int(epoch_num * 0.5)), t.Resize(target_size=width, interp='RANDOM'), t.Normalize(mean=mean, std=std), ]) # 定义训练和验证所用的数据集 # API说明:https://paddlex.readthedocs.io/zh_CN/develop/apis/datasets.html#paddlex-datasets-vocdetection train_dataset = pdx.datasets.CocoDetection( data_dir='/home/aistudio/data/data67498/DatasetId_153862_1611403574/Images', ann_file= '/home/aistudio/data/data67498/DatasetId_153862_1611403574/Annotations/coco_info.json', transforms=train_transforms, num_workers=8, buffer_size=256,
import os os.environ['CUDA_VISIBLE_DEVICES'] = '0' import paddlex as pdx import paddle.fluid as fluid from paddlex.det import transforms train_transforms = transforms.Compose([ transforms.MixupImage(alpha=1.5, beta=1.5, mixup_epoch=-1), transforms.RandomExpand(), transforms.RandomCrop(), transforms.Resize(target_size=480), transforms.RandomHorizontalFlip(prob=0.5), transforms.Normalize() ]) eval_transforms = transforms.Compose([ #transforms.Resize(target_size=480, interp='RANDOM'), transforms.Resize(target_size=480), transforms.Normalize() ]) #读取数据 train_dataset = pdx.datasets.VOCDetection( data_dir='./dataset', file_list='./dataset/train_list.txt', label_list='./dataset/label_list.txt', transforms=train_transforms) eval_dataset = pdx.datasets.VOCDetection(data_dir='./dataset', file_list='./dataset/dev_list.txt', label_list='./dataset/label_list.txt', transforms=eval_transforms)