def __init__(self, G_ch=64, G_depth=2, dim_z=128, bottom_width=4, resolution=128, G_kernel_size=3, G_attn='64', n_classes=1000, num_G_SVs=1, num_G_SV_itrs=1, G_shared=True, shared_dim=0, hier=False, cross_replica=False, mybn=False, G_activation=nn.ReLU(inplace=False), G_lr=5e-5, G_B1=0.0, G_B2=0.999, adam_eps=1e-8, BN_eps=1e-5, SN_eps=1e-12, G_mixed_precision=False, G_fp16=False, G_init='ortho', skip_init=False, no_optim=False, G_param='SN', norm_style='bn', **kwargs): super(Generator, self).__init__() # Channel width mulitplier self.ch = G_ch # Number of resblocks per stage self.G_depth = G_depth # Dimensionality of the latent space self.dim_z = dim_z # The initial spatial dimensions self.bottom_width = bottom_width # Resolution of the output self.resolution = resolution # Kernel size? self.kernel_size = G_kernel_size # Attention? self.attention = G_attn # number of classes, for use in categorical conditional generation self.n_classes = n_classes # Use shared embeddings? self.G_shared = G_shared # Dimensionality of the shared embedding? Unused if not using G_shared self.shared_dim = shared_dim if shared_dim > 0 else dim_z # Hierarchical latent space? self.hier = hier # Cross replica batchnorm? self.cross_replica = cross_replica # Use my batchnorm? self.mybn = mybn # nonlinearity for residual blocks self.activation = G_activation # Initialization style self.init = G_init # Parameterization style self.G_param = G_param # Normalization style self.norm_style = norm_style # Epsilon for BatchNorm? self.BN_eps = BN_eps # Epsilon for Spectral Norm? self.SN_eps = SN_eps # fp16? self.fp16 = G_fp16 # Architecture dict self.arch = G_arch(self.ch, self.attention)[resolution] # Which convs, batchnorms, and linear layers to use if self.G_param == 'SN': self.which_conv = functools.partial(layers.SNConv2d, kernel_size=3, padding=1, num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, eps=self.SN_eps) self.which_linear = functools.partial(layers.SNLinear, num_svs=num_G_SVs, num_itrs=num_G_SV_itrs, eps=self.SN_eps) else: self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1) self.which_linear = nn.Linear # We use a non-spectral-normed embedding here regardless; # For some reason applying SN to G's embedding seems to randomly cripple G self.which_embedding = nn.Embedding bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared else self.which_embedding) self.which_bn = functools.partial(layers.ccbn, which_linear=bn_linear, cross_replica=self.cross_replica, mybn=self.mybn, input_size=(self.shared_dim + self.dim_z if self.G_shared else self.n_classes), norm_style=self.norm_style, eps=self.BN_eps) # Prepare model # If not using shared embeddings, self.shared is just a passthrough self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared else layers.identity()) # First linear layer self.linear = self.which_linear(self.dim_z + self.shared_dim, self.arch['in_channels'][0] * (self.bottom_width **2)) # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) # while the inner loop is over a given block self.blocks = [] for index in range(len(self.arch['out_channels'])): self.blocks += [[GBlock(in_channels=self.arch['in_channels'][index], out_channels=self.arch['in_channels'][index] if g_index==0 else self.arch['out_channels'][index], which_conv=self.which_conv, which_bn=self.which_bn, activation=self.activation, upsample=(functools.partial(F.interpolate, scale_factor=2) if self.arch['upsample'][index] and g_index == (self.G_depth-1) else None))] for g_index in range(self.G_depth)] # If attention on this block, attach it to the end if self.arch['attention'][self.arch['resolution'][index]]: print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index]) self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] # Turn self.blocks into a ModuleList so that it's all properly registered. self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) # output layer: batchnorm-relu-conv. # Consider using a non-spectral conv here self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1], cross_replica=self.cross_replica, mybn=self.mybn), self.activation, self.which_conv(self.arch['out_channels'][-1], 3)) # Initialize weights. Optionally skip init for testing. if not skip_init: self.init_weights() # Set up optimizer # If this is an EMA copy, no need for an optim, so just return now if no_optim: return self.lr, self.B1, self.B2, self.adam_eps = G_lr, G_B1, G_B2, adam_eps if G_mixed_precision: print('Using fp16 adam in G...') import utils self.optim = utils.Adam16(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) else: self.optim = optim.Adam(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)
def __init__(self, D_ch=64, D_wide=True, D_depth=2, resolution=128, D_kernel_size=3, D_attn='64', n_classes=1000, num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False), D_lr=2e-4, D_B1=0.0, D_B2=0.999, adam_eps=1e-8, SN_eps=1e-12, output_dim=1, D_mixed_precision=False, D_fp16=False, D_init='ortho', skip_init=False, D_param='SN', **kwargs): super(Discriminator, self).__init__() # Width multiplier self.ch = D_ch # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN? self.D_wide = D_wide # How many resblocks per stage? self.D_depth = D_depth # Resolution self.resolution = resolution # Kernel size self.kernel_size = D_kernel_size # Attention? self.attention = D_attn # Number of classes self.n_classes = n_classes # Activation self.activation = D_activation # Initialization style self.init = D_init # Parameterization style self.D_param = D_param # Epsilon for Spectral Norm? self.SN_eps = SN_eps # Fp16? self.fp16 = D_fp16 # Architecture self.arch = D_arch(self.ch, self.attention)[resolution] # Which convs, batchnorms, and linear layers to use # No option to turn off SN in D right now if self.D_param == 'SN': self.which_conv = functools.partial(layers.SNConv2d, kernel_size=3, padding=1, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) self.which_linear = functools.partial(layers.SNLinear, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) self.which_embedding = functools.partial(layers.SNEmbedding, num_svs=num_D_SVs, num_itrs=num_D_SV_itrs, eps=self.SN_eps) # Prepare model # Stem convolution self.input_conv = self.which_conv(3, self.arch['in_channels'][0]) # self.blocks is a doubly-nested list of modules, the outer loop intended # to be over blocks at a given resolution (resblocks and/or self-attention) self.blocks = [] for index in range(len(self.arch['out_channels'])): self.blocks += [[DBlock(in_channels=self.arch['in_channels'][index] if d_index==0 else self.arch['out_channels'][index], out_channels=self.arch['out_channels'][index], which_conv=self.which_conv, wide=self.D_wide, activation=self.activation, preactivation=True, downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] and d_index==0 else None)) for d_index in range(self.D_depth)]] # If attention on this block, attach it to the end if self.arch['attention'][self.arch['resolution'][index]]: print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index]) self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)] # Turn self.blocks into a ModuleList so that it's all properly registered. self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks]) # Linear output layer. The output dimension is typically 1, but may be # larger if we're e.g. turning this into a VAE with an inference output self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim) # Embedding for projection discrimination self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1]) # Initialize weights if not skip_init: self.init_weights() # Set up optimizer self.lr, self.B1, self.B2, self.adam_eps = D_lr, D_B1, D_B2, adam_eps if D_mixed_precision: print('Using fp16 adam in D...') import utils self.optim = utils.Adam16(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps) else: self.optim = optim.Adam(params=self.parameters(), lr=self.lr, betas=(self.B1, self.B2), weight_decay=0, eps=self.adam_eps)