示例#1
0
def power_iteration(W, u_, update=True, eps=1e-12):
    # Lists holding singular vectors and values
    Wt = torch.Tensor(W).t()
    us, vs, svs = [], [], []
    for i, u in enumerate(u_):
        # Run one step of the power iteration
        with torch.no_grad():
            if W.shape[1] == 27:
                a = 1
            v = torch.matmul(u, W)
            # if (W.shape[0]==u.shape[1])  :
            #   v = torch.matmul(u, W)
            # else:
            #   v = torch.matmul(u, Wt)
            # Run Gram-Schmidt to subtract components of all other singular vectors
            v = F.normalize(gram_schmidt(v, vs), eps=eps)
            # Add to the list
            vs += [v]
            # Update the other singular vector
            u = torch.matmul(v, Wt)
            # if (W.shape[0]!=v.shape[1]):
            #   u = torch.matmul(v, Wt  )
            # else:
            #   u = torch.matmul(v, W)
            # Run Gram-Schmidt to subtract components of all other singular vectors
            u = F.normalize(gram_schmidt(u, us), eps=eps)
            # Add to the list
            us += [u]
            if update:
                torch.copy(u, u_[i])
                # u_[i][:] = u
        # Compute this singular value and add it to the list
        svs += [torch.squeeze(torch.matmul(torch.matmul(v, Wt), u.t()))]
        # if (W.shape[0]!=v.shape[1]):
        #   svs += [torch.squeeze(torch.matmul(torch.matmul(v, Wt  ), u.t() ))]
        # else:
        #   svs += [torch.squeeze(torch.matmul(torch.matmul(v, W), u.t()))]
        #svs += [torch.sum(F.linear(u, W.transpose(0, 1)) * v)]
    return svs, us, vs
示例#2
0
 def W_(self):
     self.training = True
     if isinstance(self, SNLinear):
         W_mat = torch.Tensor(self.weight).t(
         )  ##linear layer weight is different from pytorch weight, need to transpose
     else:
         W_mat = torch.Tensor(self.weight).view(self.weight.shape[0], -1)
     if self.transpose:
         W_mat = W_mat.t()
     # Apply num_itrs power iterations
     for _ in range(self.num_itrs):
         svs, us, vs = power_iteration(W_mat,
                                       self.u,
                                       update=self.training,
                                       eps=self.eps)
     # Update the svs
     if self.training:
         with torch.no_grad(
         ):  # Make sure to do this in a no_grad() context or you'll get memory leaks!
             for i, sv in enumerate(svs):
                 torch.copy(sv, self.sv[i])
                 # self.sv[i][:] = sv
     return self.weight / svs[0]
示例#3
0
 def copy_(self, src):
     torch.copy(src, self)
     return self
示例#4
0
 def __div__(self, other_var):
     paddorch.copy(self.values / other_var, self.values)
     # self.values.set_value(self.values/other_var)
     return self
示例#5
0
    def __mul__(self, other):
        paddorch.copy(self.values * other, self.values)

        # self.values.set_value(self.values*other)
        return self
示例#6
0
def moving_average(model, model_test, beta=0.999):
    for param, param_test in zip(model.parameters(), model_test.parameters()):
        porch.copy(porch.lerp(param, param_test, beta), param_test)
示例#7
0
文件: wing.py 项目: zzz2010/paddorch
def preprocess(x):
    """Preprocess 98-dimensional heatmaps."""
    N, C, H, W = x.shape
    x = truncate(x)
    x = normalize(x)

    sw = H // 256
    operations = Munch(chin=OPPAIR(0, 3),
                       eyebrows=OPPAIR(-7 * sw, 2),
                       nostrils=OPPAIR(8 * sw, 4),
                       lipupper=OPPAIR(-8 * sw, 4),
                       liplower=OPPAIR(8 * sw, 4),
                       lipinner=OPPAIR(-2 * sw, 3))

    for part, ops in operations.items():
        start, end = index_map[part]
        torch.copy(resize(shift(x[:, start:end], ops.shift), ops.resize),
                   x[:, start:end])
        # =

    zero_out = torch.cat([
        torch.arange(0, index_map.chin.start),
        torch.arange(index_map.chin.end, 33),
        torch.LongTensor([
            index_map.eyebrowsedges.start, index_map.eyebrowsedges.end,
            index_map.lipedges.start, index_map.lipedges.end
        ])
    ])

    x.fill_(val=0, dim=1, indices=zero_out.numpy())
    # x_numpy=x.numpy()
    # x_numpy[:,  zero_out.numpy()] = 0
    # x.set_value(x_numpy)
    # torch.copy(target)
    # x[:, zero_out] = 0

    start, end = index_map.nose
    torch.copy(shift(x[:, start + 1:end], 4 * sw), x[:, start + 1:end])
    torch.copy(resize(x[:, start:end], 1), x[:, start:end])
    # x[:, start+1:end] = shift(x[:, start+1:end], 4*sw)
    # x[:, start:end] = resize(x[:, start:end], 1)

    start, end = index_map.eyes

    torch.copy(resize(x[:, start:end], 1), x[:, start:end])
    torch.copy(resize(shift(x[:, start:end], -8), 3) + \
        shift(x[:, start:end], -24), x[:, start:end] )

    # x[:, start:end] = resize(x[:, start:end], 1)
    # x[:, start:end] = resize(shift(x[:, start:end], -8), 3) + \
    #     shift(x[:, start:end], -24)

    # Second-level mask
    x2 = x.clone()  #deepcopy(x)
    x2.fill_(0, 1, list(range(index_map.chin.start, index_map.chin.end)))
    x2.fill_(0, 1, list(range(index_map.lipedges.start,
                              index_map.lipedges.end)))
    x2.fill_(0, 1, list(range(index_map.eyebrows.start,
                              index_map.eyebrows.end)))
    # x2[:, index_map.chin.start:index_map.chin.end] = 0  # start:end was 0:33
    # x2[:, index_map.lipedges.start:index_map.lipinner.end] = 0  # start:end was 76:96
    # x2[:, index_map.eyebrows.start:index_map.eyebrows.end] = 0  # start:end was 33:51

    x = torch.sum(x, dim=1, keepdim=True)  # (N, 1, H, W)
    x2 = torch.sum(x2, dim=1, keepdim=True)  # mask without faceline and mouth

    x_numpy = x.numpy
    zero_indices = np.where(x_numpy != x_numpy)[0]
    x.fill_(0, 0, zero_indices)
    x2.fill_(0, 0, zero_indices)
    # x[x != x] = 0  # set nan to zero
    # x2[x != x] = 0  # set nan to zero
    return x.clamp_(0, 1), x2.clamp_(0, 1)