def __init__(self, logpath, level=None): if level is None: level = logging.PROGRESS self.logpath = logpath self.logger = multiprocessing.get_logger() self.queue = multiprocessing.Queue(-1) # Close any existing handlers self.close_handlers() # Remove any existing handlers self.logger.handlers = [] self.logger.setLevel(level) handler = MultiProcessingLogHandler(logpath, self.queue) handler.setLevel(level) formatter = logging.Formatter( '[%(asctime)s] - %(levelname)s - %(processName)s - %(message)s') handler.setFormatter(formatter) self.logger.addHandler(handler) progress_deque = collections.deque(maxlen=1) progress_handler = ProgressHandler(progress_deque) progress_handler.setLevel(level) self.logger.addHandler(progress_handler) self.e = threading.Event() def save_progress(): while self.e.wait(5) != True: try: record = progress_deque.pop() if record == StopIteration: break print record except Exception: pass return t = threading.Thread(name="ProgressUpdater", target=save_progress) t.daemon = True t.start()
def __init__(self, logpath, level=None): if level is None: level = logging.PROGRESS self.logpath = logpath self.logger = multiprocessing.get_logger() self.queue = multiprocessing.Queue(-1) # Close any existing handlers self.close_handlers() # Remove any existing handlers self.logger.handlers = [] self.logger.setLevel(level) handler = MultiProcessingLogHandler(logpath, self.queue) handler.setLevel(level) formatter = logging.Formatter('[%(asctime)s] - %(levelname)s - %(processName)s - %(message)s') handler.setFormatter(formatter) self.logger.addHandler(handler) progress_deque = collections.deque(maxlen=1) progress_handler = ProgressHandler(progress_deque) progress_handler.setLevel(level) self.logger.addHandler(progress_handler) self.e = threading.Event() def save_progress(): while self.e.wait(5) != True: try: record = progress_deque.pop() if record == StopIteration: break print record except Exception: pass return t = threading.Thread(name="ProgressUpdater", target=save_progress) t.daemon = True t.start()
def run(run_id): with app.app_context(): job = get_current_job(connection=redis_connection) output_path = os.path.join(current_app.config['OUTPUT_PATH'], run_id) shutil.rmtree(output_path, ignore_errors=True) os.makedirs(output_path) cache_path = os.path.join(current_app.config['CACHE_PATH'], run_id) shutil.rmtree(cache_path, ignore_errors=True) os.makedirs(cache_path) f, log_file = tempfile.mkstemp(dir=cache_path, prefix=run_id, suffix=".log") os.close(f) os.chmod(log_file, 0644) run = db.Run.find_one( { '_id' : ObjectId(run_id) } ) if run is None: return "Failed to locate run %s. May have been deleted while task was in the queue?" % run_id # Wait for PubSub listening to begin time.sleep(2) model = None try: hydropath = run['hydro_path'] geometry = loads(run['geometry']) start_depth = run['release_depth'] num_particles = run['particles'] time_step = run['timestep'] num_steps = int(math.ceil((run['duration'] * 24 * 60 * 60) / time_step)) start_time = run['start'].replace(tzinfo = pytz.utc) shoreline_path = run['shoreline_path'] or app.config.get("SHORE_PATH") shoreline_feat = run['shoreline_feature'] # Setup Models models = [] if run['cached_behavior'] is not None and run['cached_behavior'].get('results', None) is not None: behavior_data = run['cached_behavior']['results'][0] l = LarvaBehavior(data=behavior_data) models.append(l) models.append(Transport(horizDisp=run['horiz_dispersion'], vertDisp=run['vert_dispersion'])) output_formats = [ ex.H5Trackline, ex.H5TracklineWithPoints, ex.H5ParticleTracklines, ex.H5ParticleMultiPoint, ex.H5GDALShapefile ] def save_progress(stop, progress_deque, logger): while True: if stop(): break try: record = progress_deque.pop() if record == StopIteration: break job.meta["updated"] = record[0] if record is not None and record[1] >= 0: job.meta["progress"] = record[1] if isinstance(record[2], unicode) or isinstance(record[2], str): job.meta["message"] = record[2] job.save() except IndexError: pass except Exception: raise # Relax time.sleep(0.01) # Set up Logger from paegan.logger.progress_handler import ProgressHandler from paegan.logger.multi_process_logging import MultiProcessingLogHandler from paegan.logger import logger # Logging handler queue = multiprocessing.Queue(-1) logger.setLevel(logging.PROGRESS) if app.config.get("DEBUG") is True: mphandler = MultiProcessingLogHandler(log_file, queue, stream=True) else: mphandler = MultiProcessingLogHandler(log_file, queue) mphandler.setLevel(logging.PROGRESS) formatter = logging.Formatter('[%(asctime)s] - %(levelname)s - %(name)s - %(processName)s - %(message)s') mphandler.setFormatter(formatter) logger.addHandler(mphandler) # Progress handler progress_deque = collections.deque(maxlen=1) progress_handler = ProgressHandler(progress_deque) progress_handler.setLevel(logging.PROGRESS) logger.addHandler(progress_handler) stop_log_listener = False pl = threading.Thread(name="ProgressUpdater", target=save_progress, args=(lambda: stop_log_listener, progress_deque, logger,)) pl.start() model = CachingModelController( geometry=geometry, depth=start_depth, start=start_time, step=time_step, nstep=num_steps, npart=num_particles, models=models, use_bathymetry=True, bathy_path=current_app.config['BATHY_PATH'], use_shoreline=True, time_method=run['time_method'], time_chunk=run['time_chunk'], horiz_chunk=run['horiz_chunk'], shoreline_path=shoreline_path, shoreline_feature=shoreline_feat, shoreline_index_buffer=0.05) cache_file = os.path.join(cache_path, run_id + ".nc.cache") model.setup_run(hydropath, cache_path=cache_file, remove_cache=False) run.started = datetime.utcnow() model.run(output_formats=output_formats, output_path=output_path) except Exception as e: # Stop progress log handler stop_log_listener = True # Wait for log listener to exit pl.join() app.logger.exception("Failed to run model") job.meta["message"] = e.message job.meta["outcome"] = "failed" else: # Stop progress log handler stop_log_listener = True # Wait for log listener to exit pl.join() job.meta["message"] = "Complete" job.meta["outcome"] = "success" job.meta["progress"] = 100 finally: # Close and remove the handlers so we can use the log file without a file lock for hand in list(logger.handlers): logger.removeHandler(hand) hand.flush() hand.close() queue.close() queue.join_thread() time.sleep(1) # Move logfile to output directory shutil.move(log_file, os.path.join(output_path, 'model.log')) # Move cachefile to output directory if we made one shutil.move(cache_file, os.path.join(output_path, 'hydro_cache.nc')) output_files = [] for filename in os.listdir(output_path): outfile = os.path.join(output_path, filename) output_files.append(outfile) result_files = [] # Handle results and cleanup if current_app.config['USE_S3'] is True: base_access_url = urljoin("http://%s.s3.amazonaws.com/output/" % current_app.config['S3_BUCKET'], run_id) # Upload results to S3 and remove the local copies conn = S3Connection() bucket = conn.get_bucket(current_app.config['S3_BUCKET']) for outfile in output_files: # Upload the outfile with the same as the run name _, ext = os.path.splitext(outfile) new_filename = slugify(unicode(run['name'])) + ext k = Key(bucket) k.key = "output/%s/%s" % (run_id, new_filename) k.set_contents_from_filename(outfile) k.set_acl('public-read') result_files.append(base_access_url + "/" + new_filename) os.remove(outfile) shutil.rmtree(output_path, ignore_errors=True) else: result_files = output_files job.meta["updated"] = datetime.utcnow().replace(tzinfo=pytz.utc).astimezone(pytz.utc) job.save() # Set output fields run.output = result_files run.ended = datetime.utcnow() run.compute() run.save()
def run(run_id): # Sleep to give the Run object enough time to save time.sleep(10) with app.app_context(): from paegan.logger import logger job = get_current_job() output_path = os.path.join(current_app.config['OUTPUT_PATH'], run_id) shutil.rmtree(output_path, ignore_errors=True) os.makedirs(output_path) cache_path = os.path.join(current_app.config['CACHE_PATH'], run_id) shutil.rmtree(cache_path, ignore_errors=True) os.makedirs(cache_path) temp_animation_path = os.path.join(current_app.config['OUTPUT_PATH'], "temp_images_" + run_id) shutil.rmtree(temp_animation_path, ignore_errors=True) os.makedirs(temp_animation_path) # Set up Logger queue = multiprocessing.Queue(-1) f, log_file = tempfile.mkstemp(dir=cache_path, prefix=run_id, suffix=".log") os.close(f) # Close any existing handlers (hand.close() for hand in logger.handlers) # Remove any existing handlers logger.handlers = [] logger.setLevel(logging.PROGRESS) handler = MultiProcessingLogHandler(log_file, queue) handler.setLevel(logging.PROGRESS) formatter = logging.Formatter('[%(asctime)s] - %(levelname)s - %(name)s - %(processName)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) # Progress stuff. Hokey! progress_deque = collections.deque(maxlen=1) progress_handler = ProgressHandler(progress_deque) progress_handler.setLevel(logging.PROGRESS) logger.addHandler(progress_handler) e = threading.Event() def save_progress(): while e.wait(5) is not True: try: record = progress_deque.pop() if record == StopIteration: break job.meta["updated"] = record[0] if record is not None and record[1] >= 0: job.meta["progress"] = record[1] if isinstance(record[2], unicode) or isinstance(record[2], str): job.meta["message"] = record[2] job.save() except IndexError: pass except Exception: raise return t = threading.Thread(name="ProgressUpdater", target=save_progress) t.daemon = True t.start() model = None try: logger.progress((0, "Configuring model")) run = db.Run.find_one( { '_id' : ObjectId(run_id) } ) if run is None: return "Failed to locate run %s. May have been deleted while task was in the queue?" % run_id geometry = loads(run['geometry']) start_depth = run['release_depth'] num_particles = run['particles'] time_step = run['timestep'] num_steps = int(math.ceil((run['duration'] * 24 * 60 * 60) / time_step)) start_time = run['start'].replace(tzinfo = pytz.utc) shoreline_path = run['shoreline_path'] or app.config.get("SHORE_PATH") shoreline_feat = run['shoreline_feature'] # Set up output directory/bucket for run output_formats = ['Shapefile', 'NetCDF', 'Trackline'] # Setup Models models = [] if run['cached_behavior'] is not None and run['cached_behavior'].get('results', None) is not None: behavior_data = run['cached_behavior']['results'][0] l = LarvaBehavior(data=behavior_data) models.append(l) models.append(Transport(horizDisp=run['horiz_dispersion'], vertDisp=run['vert_dispersion'])) # Setup ModelController model = ModelController(geometry=geometry, depth=start_depth, start=start_time, step=time_step, nstep=num_steps, npart=num_particles, models=models, use_bathymetry=True, use_shoreline=True, time_chunk=run['time_chunk'], horiz_chunk=run['horiz_chunk'], time_method=run['time_method'], shoreline_path=shoreline_path, shoreline_feature=shoreline_feat, reverse_distance=1500) # Run the model cache_file = os.path.join(cache_path, run_id + ".nc.cache") bathy_file = current_app.config['BATHY_PATH'] model.run(run['hydro_path'], output_path=output_path, bathy=bathy_file, output_formats=output_formats, cache=cache_file, remove_cache=False, caching=run['caching']) # Skip creating movie output_path """ from paegan.viz.trajectory import CFTrajectory logger.info("Creating animation...") for filename in os.listdir(output_path): if os.path.splitext(filename)[1][1:] == "nc": # Found netCDF file netcdf_file = os.path.join(output_path,filename) traj = CFTrajectory(netcdf_file) success = traj.plot_animate(os.path.join(output_path,'animation.avi'), temp_folder=temp_animation_path, bathy=app.config['BATHY_PATH']) if not success: logger.info("Could not create animation") else: logger.info("Animation saved") """ job.meta["outcome"] = "success" job.save() return "Successfully ran %s" % run_id except Exception as exception: logger.warn("Run FAILED, cleaning up and uploading log.") logger.warn(exception.message) job.meta["outcome"] = "failed" job.save() raise finally: logger.progress((99, "Processing output files")) # Close the handler so we can upload the log file without a file lock (hand.close() for hand in logger.handlers) queue.put(StopIteration) # Break out of the progress loop e.set() t.join() # Move logfile to output directory shutil.move(log_file, os.path.join(output_path, 'model.log')) # Move cachefile to output directory if we made one if run['caching']: shutil.move(cache_file, output_path) output_files = [] for filename in os.listdir(output_path): outfile = os.path.join(output_path, filename) output_files.append(outfile) result_files = [] base_access_url = current_app.config.get('NON_S3_OUTPUT_URL', None) # Handle results and cleanup if current_app.config['USE_S3'] is True: base_access_url = urljoin("http://%s.s3.amazonaws.com/output/" % current_app.config['S3_BUCKET'], run_id) # Upload results to S3 and remove the local copies conn = S3Connection() bucket = conn.get_bucket(current_app.config['S3_BUCKET']) for outfile in output_files: # Don't upload the cache file if os.path.basename(outfile) == os.path.basename(cache_file): continue # Upload the outfile with the same as the run name _, ext = os.path.splitext(outfile) new_filename = slugify(unicode(run['name'])) + ext k = Key(bucket) k.key = "output/%s/%s" % (run_id, new_filename) k.set_contents_from_filename(outfile) k.set_acl('public-read') result_files.append(base_access_url + "/" + new_filename) os.remove(outfile) shutil.rmtree(output_path, ignore_errors=True) else: for outfile in output_files: result_files.append(urljoin(base_access_url, run_id) + "/" + os.path.basename(outfile)) shutil.rmtree(temp_animation_path, ignore_errors=True) # Set output fields run.output = result_files run.ended = datetime.utcnow() run.compute() run.save() # Cleanup logger.removeHandler(handler) del formatter del handler del logger del model queue.close() job.meta["message"] = "Complete" job.save()