示例#1
0
    def cov_bonilla(X0, Y, theta):
        #Kx = mk52(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_m)
        Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_m)
        Kx = Kx + 1E-6 * np.eye(Kx.shape[0])

        if unitary is not None:
            Ks = np.array([[1.0, float(unitary)], [float(unitary), 1.0]])
        else:
            L = np.array([
                np.array([theta.rho[str(sorted([i, j]))] if i >= j else 0.0 for j in range(theta.n_IS)])  # Lower triangulary
                for i in range(theta.n_IS)
            ])
            Ks = L.dot(L.T)

        e = np.diag(np.array([theta.e1, theta.e2]))

        Ks = np.matmul(e, np.matmul(Ks, e))
        
        K = np.kron(Ks, Kx)

        return np.kron(Ks, Kx)
示例#2
0
    def cov_bonilla(X0, Y, theta):
        Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1)
        Kx = Kx + 1E-6 * np.eye(Kx.shape[0])

        if use_J:
            Ks = np.ones((theta.n_IS, theta.n_IS)) * (1.0 - 1E-6) + np.eye(
                theta.n_IS) * 1E-6
        elif use_I:
            Ks = np.eye(theta.n_IS)
        elif dpc and invert_dpc:
            Ks = np.array([
                np.array([
                    1.0 if i != j else theta.rho["[0, %d]" % i]**(-2.0)
                    for j in range(theta.n_IS)
                ]) for i in range(theta.n_IS)
            ])
        elif dpc:
            Ks = np.array([
                np.array([
                    theta.rho[str(sorted([i, j]))] for j in range(theta.n_IS)
                ]) for i in range(theta.n_IS)
            ])
        else:
            L = np.array([
                np.array([
                    theta.rho[str(sorted([i, j]))] if i >= j else 0.0
                    for j in range(theta.n_IS)
                ]) for i in range(theta.n_IS)
            ])
            # Force it to be positive semi-definite
            Ks = L.dot(L.T)
            if theta.n_IS == 2:
                e = np.diag(np.array([theta.e1, theta.e2]))
            elif theta.n_IS == 3:
                e = np.diag(np.array([theta.e1, theta.e2, theta.e3]))
            else:
                raise Exception("HOW?")
            Ks = e.dot(Ks.dot(e))

        return np.kron(Ks, Kx)
示例#3
0
    def cov_pricm(X0, Y, theta, split=False):
        Kx = squared(np.array(X0), [theta.l1], theta.sig_1)
        Kx = Kx + 1E-6 * np.eye(Kx.shape[0])

        if model.lower() == "pricm":
            Ks = np.array([
                np.array([
                    theta.rho[str(sorted([i, j]))] for j in range(theta.n_IS)
                ]) for i in range(theta.n_IS)
            ])
        elif model.lower() == "icm":
            L = np.array([
                np.array([
                    theta.rho[str(sorted([i, j]))] if i >= j else 0.0
                    for j in range(theta.n_IS)
                ]) for i in range(theta.n_IS)
            ])
            # Force it to be positive semi-definite
            Ks = L.dot(L.T)

        if split:
            return Ks, Kx
        else:
            return np.kron(Ks, Kx)
示例#4
0
 def cov_miso(X0, Y, theta, split=False):
     Kx = squared(np.array(X0), [theta.l1], theta.sig_1)
     Kx_l = squared(np.array(X0), [theta.l2], theta.sig_2)
     return np.block([[Kx, Kx], [Kx, Kx + Kx_l]])
示例#5
0
 def cov(X0, Y, theta):
     return squared(np.array(X0), [theta.l1], theta.sig_1)
示例#6
0
文件: run_ei.py 项目: ClancyLab/PAL
 def cov(X0, Y, theta):
     return squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1)
示例#7
0
 def cov_miso(X0, Y, theta):
     Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1)
     Kx_l = squared(np.array(X0)[:, 1:], [theta.l3, theta.l4], theta.sig_2)
     return np.block([[Kx, Kx], [Kx, Kx + Kx_l]])