def run(run_index, model, folder="data_dumps", hp_opt="IS0", sample_domain=1000): ''' This function will run CO optimization using one of several coregionalization methods. 1. Pearson R Intrinsic Coregionalization Method (PRICM). This approach will dynamically calculate the Pearson R value for the off-diagonals in the ICM. Diagonals are kept as 1.0. 2. Intrinsic Coregionalization Method (ICM). This approach will use a lower triangular matrix (L) of hyperparameters to generate the coregionalization matrix B = LL^T. Further, we can parameterize the hyperparameters in many ways: 1. IS0 - Only parameterize hyperparameters using values sampled at IS0. 2. Full - Parameterize hyperparameters using all sampled data. 3. Overlap - Parameterize hyperparameters using data that overlaps all IS. **Parameters** run_index: *int* This is simply used for a naming convention. model: *str* The model to be used (PRICM or ICM). folder: *str, optional* What to name the folder where the data will go. hp_opt: *str, optional* With what data should the hyperparameters be parameterized. Options: IS0, full, overlap sample_domain: *int, optional* How many data points to sample from the domain. ''' hp_opt = hp_opt.lower() allowed_hp_opt = ["is0", "full", "overlap"] assert hp_opt in allowed_hp_opt, "Error, hp_opt (%s) not in %s" % ( hp_opt, ", ".join(allowed_hp_opt)) # Generate the main object sim = Optimizer() # Assign simulation properties sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = None sim.fname_historical = None sim.logger_fname = "%s/%d_%s_%s.log" % (folder, run_index, model, hp_opt) if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = None sim.mu_fname = None sim.sig_fname = None sim.combos_fname = None sim.hp_fname = None sim.acquisition_fname = None sim.save_extra_files = True # Information sources, in order from expensive to cheap rosenbrock = lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 sim.IS = [ lambda x1, x2: -1.0 * rosenbrock(x1, x2), lambda x1, x2: -1.0 * (rosenbrock(x1, x2) + 10.0 * np.sin(10.0 * x1 + 5.0 * x2)) ] sim.costs = [1000.0, 1.0] sim.save_extra_files = False ######################################## sim.numerical = True sim.historical_nsample = 5 sim.domain = [(-2.0, 2.0), (-2.0, 2.0)] sim.sample_n_from_domain = sample_domain ######################################## sim.n_start = 10 # The number of starting MLE samples # sim.reopt = 20 sim.reopt = float('inf') # Never re-opt hyperparams sim.ramp_opt = None sim.parallel = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error sim.acquisition = getNextSample_misokg # Functional forms of our mean and covariance sim.mean = lambda X, Y, theta: np.array([-456.3 for _ in Y]) def cov_miso(X0, Y, theta, split=False): Kx = squared(np.array(X0), [theta.l1], theta.sig_1) Kx_l = squared(np.array(X0), [theta.l2], theta.sig_2) return np.block([[Kx, Kx], [Kx, Kx + Kx_l]]) def cov_pricm(X0, Y, theta, split=False): Kx = squared(np.array(X0), [theta.l1], theta.sig_1) Kx = Kx + 1E-6 * np.eye(Kx.shape[0]) if model.lower() == "pricm": Ks = np.array([ np.array([ theta.rho[str(sorted([i, j]))] for j in range(theta.n_IS) ]) for i in range(theta.n_IS) ]) elif model.lower() == "icm": L = np.array([ np.array([ theta.rho[str(sorted([i, j]))] if i >= j else 0.0 for j in range(theta.n_IS) ]) for i in range(theta.n_IS) ]) # Force it to be positive semi-definite Ks = L.dot(L.T) if split: return Ks, Kx else: return np.kron(Ks, Kx) sim.theta.bounds = {} sim.theta.sig_1, sim.theta.bounds['sig_1'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) if model == "miso": sim.cov = cov_miso sim.theta.sig_2, sim.theta.bounds['sig_2'] = None, ( 1E-2, lambda _, Y: np.var(Y)) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) sim.theta.rho = { str(sorted([i, j])): 1.0 for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } else: sim.cov = cov_pricm sim.theta.rho = {"[0, 0]": None, "[0, 1]": None, "[1, 1]": None} if model.lower() == "icm": sim.theta.rho = { str(sorted([i, j])): None for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } elif model.lower() == "pricm": sim.theta.rho = { str(sorted([i, j])): 1.0 for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } sim.dynamic_pc = True else: raise Exception("Invalid model. Use MISO, ICM, or PRICM") for k in sim.theta.rho.keys(): sim.theta.bounds['rho %s' % k] = (0.1, 1.0) a, b = eval(k) if a != b: sim.theta.bounds['rho %s' % k] = (0.01, 1.0 - 1E-6) sim.theta.set_hp_names() # Define how we update hyperparameters hp_opt = hp_opt.lower() if hp_opt == "is0": sim.update_hp_only_with_IS0 = True sim.update_hp_only_with_overlapped = False elif hp_opt == "overlap": sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = True elif hp_opt == "full": sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = False else: raise Exception("Unknown hp_opt (%s)." % hp_opt) # These should be False by default, but ensure they are sim.theta.normalize_L = False sim.theta.normalize_Ks = False sim.preconditioned = False # Assign our likelihood function. sim.loglike = g_loglike ################################################################################################### # Start simulation sim.iteration_kill_switch = None sim.cost_kill_switch = 100000 sim.run()
def run(run_index, folder="data_dumps", sample_domain=1000): ''' This function will run CO optimization using one of several coregionalization methods. 1. Pearson R Intrinsic Coregionalization Method (PRICM). This approach will dynamically calculate the Pearson R value for the off-diagonals in the ICM. Diagonals are kept as 1.0. 2. Intrinsic Coregionalization Method (ICM). This approach will use a lower triangular matrix (L) of hyperparameters to generate the coregionalization matrix B = LL^T. Further, we can parameterize the hyperparameters in many ways: 1. IS0 - Only parameterize hyperparameters using values sampled at IS0. 2. Full - Parameterize hyperparameters using all sampled data. 3. Overlap - Parameterize hyperparameters using data that overlaps all IS. **Parameters** run_index: *int* This is simply used for a naming convention. folder: *str, optional* What to name the folder where the data will go. sample_domain: *int, optional* How many data points to sample from the domain. ''' # Generate the main object sim = Optimizer() # Assign simulation properties sim.hyperparameter_objective = MLE sim.acquisition = getNextSample_EI ################################################################################################### # File names sim.fname_out = None sim.fname_historical = None sim.logger_fname = "%s/%d_%s.log" % (folder, run_index, "ei") if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = None sim.mu_fname = None sim.sig_fname = None sim.combos_fname = None sim.hp_fname = None sim.acquisition_fname = None sim.save_extra_files = True # Information sources, in order from expensive to cheap IS0 = pickle.load(open("IS0.pickle", 'r')) sim.IS = [ lambda x1: -1.0 * IS0[int((x1 - 0.5) * 1000.0)][0], ] sim.costs = [ np.mean([IS[1] for IS in IS0]), ] sim.save_extra_files = False ######################################## sim.numerical = True sim.historical_nsample = 5 sim.domain = [(0.5, 2.5)] sim.sample_n_from_domain = sample_domain ######################################## sim.n_start = 10 # The number of starting MLE samples # sim.reopt = 20 sim.reopt = float("inf") sim.ramp_opt = None sim.parallel = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error # Functional forms of our mean and covariance sim.mean = lambda X, Y, theta: np.array([0.0 for _ in Y]) def cov(X0, Y, theta): return squared(np.array(X0), [theta.l1], theta.sig_1) sim.cov = cov sim.theta.bounds = {} sim.theta.sig_1, sim.theta.bounds['sig_1'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.rho = { str(sorted([i, j])): 1.0 for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } for k in sim.theta.rho.keys(): sim.theta.bounds['rho %s' % k] = (0.1, 1.0) a, b = eval(k) if a != b: sim.theta.bounds['rho %s' % k] = (0.01, 1.0 - 1E-6) sim.theta.set_hp_names() # Define how we update hyperparameters sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = False # These should be False by default, but ensure they are sim.theta.normalize_L = False sim.theta.normalize_Ks = False sim.preconditioned = False # Assign our likelihood function. sim.loglike = g_loglike ################################################################################################### # Start simulation sim.iteration_kill_switch = None sim.cost_kill_switch = 3000 sim.run()
def run_misokg(run_index, sffx="misokg", scaled=False, loose=False, very_loose=False, use_MAP=False, upper=1.0, run_unitary=False, use_miso=False): SAMPLE_DOMAIN = 1000 # Generate the main object sim = Optimizer() # Assign simulation properties if use_MAP: sim.hyperparameter_objective = MAP else: sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = None sim.fname_historical = None sim.logger_fname = "data_dumps/%d_%s.log" % (run_index, sffx) if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = None sim.mu_fname = None sim.sig_fname = None sim.combos_fname = None #sim.hp_fname = None sim.hp_fname = "data_dumps/%d_HP_%s.log" % (run_index, sffx) sim.acquisition_fname = None sim.save_extra_files = True # Information sources, in order from expensive to cheap rosenbrock = lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 sim.IS = [ lambda x1, x2: -1.0 * rosenbrock(x1, x2), lambda x1, x2: -1.0 * (rosenbrock(x1, x2) + 0.1 * np.sin(10.0 * x1 + 5.0 * x2)) ] #sim.IS = [ # lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 + np.random.normal() # lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 + 2.0 * np.sin(10.0 * x1 + 5.0 * x2) #] sim.costs = [1000.0, 1.0] ######################################## sim.numerical = True sim.historical_nsample = 5 sim.domain = [(-2.0, 2.0), (-2.0, 2.0)] sim.sample_n_from_domain = SAMPLE_DOMAIN ######################################## sim.n_start = 10 # The number of starting MLE samples sim.reopt = 20 sim.ramp_opt = None sim.parallel = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error sim.acquisition = getNextSample_misokg # Functional forms of our mean and covariance sim.mean = lambda X, Y, theta: np.array([-456.3 for _ in Y]) def cov_miso(X0, Y, theta): Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1) Kx_l = squared(np.array(X0)[:, 1:], [theta.l3, theta.l4], theta.sig_2) return np.block([[Kx, Kx], [Kx, Kx + Kx_l]]) def cov_bonilla(X0, Y, theta): #Kx = mk52(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_m) Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_m) Kx = Kx + 1E-6 * np.eye(Kx.shape[0]) if run_unitary: Ks = np.array([[1.0, 1.0 - 1E-6], [1.0 - 1E-6, 1.0]]) else: L = np.array([ np.array([ theta.rho[str(sorted([i, j]))] if i >= j else 0.0 for j in range(theta.n_IS) ]) # Lower triangulary for i in range(theta.n_IS) ]) Ks = L.dot(L.T) e = np.diag(np.array([theta.e1, theta.e2])) Ks = np.matmul(e, np.matmul(Ks, e)) K = np.kron(Ks, Kx) return np.kron(Ks, Kx) if use_miso: sim.cov = cov_miso sim.theta.bounds = {} sim.theta.sig_1, sim.theta.bounds['sig_1'] = None, ( 1E-2, lambda _, Y: np.var(Y)) sim.theta.sig_2, sim.theta.bounds['sig_2'] = None, ( 1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) sim.theta.l3, sim.theta.bounds['l3'] = None, (1E-1, 1) sim.theta.l4, sim.theta.bounds['l4'] = None, (1E-1, 1) sim.theta.rho = {"[0, 0]": 1.0, "[0, 1]": 1.0, "[1, 1]": 1.0} sim.theta.bounds['rho [0, 0]'] = (1.0, 1.0) sim.theta.bounds['rho [0, 1]'] = (1.0, 1.0) sim.theta.bounds['rho [1, 1]'] = (1.0, 1.0) else: sim.cov = cov_bonilla sim.theta.bounds = {} sim.theta.sig_m, sim.theta.bounds['sig_m'] = None, ( 1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) if scaled: sim.theta.e1, sim.theta.bounds['e1'] = None, (1E-1, upper) sim.theta.e2, sim.theta.bounds['e2'] = None, (1E-1, upper) else: sim.theta.e1, sim.theta.bounds['e1'] = 1.0, (1E-1, upper) sim.theta.e2, sim.theta.bounds['e2'] = 1.0, (1E-1, upper) # NOTE! This is a reserved keyword in misoKG. We will generate a list of the same length # of the information sources, and use this for scaling our IS. if very_loose: sim.theta.rho = {"[0, 0]": None, "[0, 1]": None, "[1, 1]": None} elif loose: sim.theta.rho = {"[0, 0]": 1.0, "[0, 1]": None, "[1, 1]": 1.0} elif run_unitary: sim.theta.rho = {"[0, 0]": 1.0, "[0, 1]": 1.0, "[1, 1]": 1.0} else: raise Exception("What is trying to be run?") sim.theta.bounds['rho [0, 0]'] = (0.1, upper) sim.theta.bounds['rho [0, 1]'] = (0.1, upper) sim.theta.bounds['rho [1, 1]'] = (0.01, upper) sim.theta.set_hp_names() sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = False sim.theta.normalize_L = False sim.theta.normalize_Ks = False ################################################################################################### # Start simulation sim.iteration_kill_switch = 200 sim.cost_kill_switch = 10000 sim.run()
def run_ei(run_index, SAMPLE_DOMAIN=1000): FOLDER = "RNS%d" % SAMPLE_DOMAIN sffx = "ei" # Generate the main object sim = Optimizer() # Assign simulation properties #if use_MAP: # sim.hyperparameter_objective = MAP #else: sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = None sim.fname_historical = None sim.logger_fname = "%s/%d_%s.log" % (FOLDER, run_index, sffx) if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = None sim.mu_fname = None sim.sig_fname = None sim.combos_fname = None sim.hp_fname = None sim.acquisition_fname = None sim.save_extra_files = True # Information sources, in order from expensive to cheap rosenbrock = lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 sim.IS = [lambda x1, x2: -1.0 * rosenbrock(x1, x2)] sim.costs = [1000.0] ######################################## sim.numerical = True sim.historical_nsample = 5 sim.domain = [(-2.0, 2.0), (-2.0, 2.0)] sim.sample_n_from_domain = SAMPLE_DOMAIN ######################################## sim.n_start = 10 # The number of starting MLE samples sim.reopt = 20 sim.ramp_opt = None sim.parallel = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error # Functional forms of our mean and covariance sim.mean = lambda X, Y, theta: np.array([-456.3 for _ in Y]) def cov(X0, Y, theta): return squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1) sim.cov = cov sim.theta.bounds = {} sim.theta.sig_1, sim.theta.bounds['sig_1'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) sim.theta.rho = { str(sorted([i, j])): 1.0 for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } for k in sim.theta.rho.keys(): sim.theta.bounds['rho %s' % k] = (0.1, 1.0) a, b = eval(k) if a != b: sim.theta.bounds['rho %s' % k] = (0.01, 1.0 - 1E-6) sim.theta.set_hp_names() sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = False sim.theta.normalize_L = False sim.theta.normalize_Ks = False ################################################################################################### # Start simulation sim.iteration_kill_switch = 200 sim.cost_kill_switch = 10000 sim.run()
def run_misokg(run_index, sffx="misokg", SAMPLE_DOMAIN=1000): FOLDER = "RNS%d" % SAMPLE_DOMAIN scaled = False dpc = False invert_dpc = False scaled = False use_I = False use_J = False use_miso = False if sffx == "misokg": use_miso = True elif sffx == "bdpc": dpc = True elif sffx == "bidpc": dpc = True invert_dpc = True elif sffx == "bvl": pass elif sffx == "bsvl": scaled = True elif sffx == "bI": use_I = True elif sffx == "bu": use_J = True else: raise Exception("This sffx (%s) is not accounted for." % sffx) # Generate the main object sim = Optimizer() # Assign simulation properties #if use_MAP: # sim.hyperparameter_objective = MAP #else: sim.hyperparameter_objective = MLE ################################################################################################### # File names sim.fname_out = None sim.fname_historical = None sim.logger_fname = "%s/%d_%s.log" % (FOLDER, run_index, sffx) if os.path.exists(sim.logger_fname): os.system("rm %s" % sim.logger_fname) os.system("touch %s" % sim.logger_fname) sim.obj_vs_cost_fname = None sim.mu_fname = None sim.sig_fname = None sim.combos_fname = None sim.hp_fname = None sim.acquisition_fname = None sim.save_extra_files = True # Information sources, in order from expensive to cheap rosenbrock = lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 sim.IS = [ lambda x1, x2: -1.0 * rosenbrock(x1, x2), lambda x1, x2: -1.0 * (rosenbrock(x1, x2) + 0.1 * np.sin(10.0 * x1 + 5.0 * x2)) ] #sim.IS = [ # lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 + np.random.normal() # lambda x1, x2: (1.0 - x1)**2 + 100.0 * (x2 - x1**2)**2 - 456.3 + 2.0 * np.sin(10.0 * x1 + 5.0 * x2) #] sim.costs = [1000.0, 1.0] ######################################## sim.numerical = True sim.historical_nsample = 5 sim.domain = [(-2.0, 2.0), (-2.0, 2.0)] sim.sample_n_from_domain = SAMPLE_DOMAIN ######################################## sim.n_start = 10 # The number of starting MLE samples sim.reopt = 20 sim.ramp_opt = None sim.parallel = False # Parameters for debugging and overwritting sim.debug = False sim.verbose = True sim.overwrite = True # If True, warning, else Error sim.acquisition = getNextSample_misokg # Functional forms of our mean and covariance sim.mean = lambda X, Y, theta: np.array([-456.3 for _ in Y]) def cov_miso(X0, Y, theta): Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1) Kx_l = squared(np.array(X0)[:, 1:], [theta.l3, theta.l4], theta.sig_2) return np.block([[Kx, Kx], [Kx, Kx + Kx_l]]) def cov_bonilla(X0, Y, theta): Kx = squared(np.array(X0)[:, 1:], [theta.l1, theta.l2], theta.sig_1) Kx = Kx + 1E-6 * np.eye(Kx.shape[0]) if use_J: Ks = np.ones((theta.n_IS, theta.n_IS)) * (1.0 - 1E-6) + np.eye( theta.n_IS) * 1E-6 elif use_I: Ks = np.eye(theta.n_IS) elif dpc and invert_dpc: Ks = np.array([ np.array([ 1.0 if i != j else theta.rho["[0, %d]" % i]**(-2.0) for j in range(theta.n_IS) ]) for i in range(theta.n_IS) ]) elif dpc: Ks = np.array([ np.array([ theta.rho[str(sorted([i, j]))] for j in range(theta.n_IS) ]) for i in range(theta.n_IS) ]) else: L = np.array([ np.array([ theta.rho[str(sorted([i, j]))] if i >= j else 0.0 for j in range(theta.n_IS) ]) for i in range(theta.n_IS) ]) # Force it to be positive semi-definite Ks = L.dot(L.T) if theta.n_IS == 2: e = np.diag(np.array([theta.e1, theta.e2])) elif theta.n_IS == 3: e = np.diag(np.array([theta.e1, theta.e2, theta.e3])) else: raise Exception("HOW?") Ks = e.dot(Ks.dot(e)) return np.kron(Ks, Kx) sim.theta.bounds = {} sim.theta.sig_1, sim.theta.bounds['sig_1'] = None, (1E-2, lambda _, Y: np.var(Y)) sim.theta.l1, sim.theta.bounds['l1'] = None, (1E-1, 1) sim.theta.l2, sim.theta.bounds['l2'] = None, (1E-1, 1) if use_miso: sim.cov = cov_miso sim.theta.sig_2, sim.theta.bounds['sig_2'] = None, ( 1E-2, lambda _, Y: np.var(Y)) sim.theta.l3, sim.theta.bounds['l3'] = None, (1E-1, 1) sim.theta.l4, sim.theta.bounds['l4'] = None, (1E-1, 1) sim.theta.rho = { str(sorted([i, j])): 1.0 for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } else: sim.cov = cov_bonilla if scaled: sim.theta.e1, sim.theta.bounds['e1'] = None, (1E-1, 1.0) sim.theta.e2, sim.theta.bounds['e2'] = None, (1E-1, 1.0) else: sim.theta.e1, sim.theta.bounds['e1'] = 1.0, (1E-1, 1.0) sim.theta.e2, sim.theta.bounds['e2'] = 1.0, (1E-1, 1.0) sim.theta.rho = {"[0, 0]": None, "[0, 1]": None, "[1, 1]": None} if dpc or use_I or use_J: sim.theta.rho = { str(sorted([i, j])): 1.0 for i in range(len(sim.IS)) for j in range(i, len(sim.IS)) } sim.dynamic_pc = dpc for k in sim.theta.rho.keys(): sim.theta.bounds['rho %s' % k] = (0.1, 1.0) a, b = eval(k) if a != b: sim.theta.bounds['rho %s' % k] = (0.01, 1.0 - 1E-6) sim.theta.set_hp_names() sim.update_hp_only_with_IS0 = False sim.update_hp_only_with_overlapped = False sim.theta.normalize_L = False sim.theta.normalize_Ks = False ################################################################################################### # Start simulation sim.iteration_kill_switch = 200 sim.cost_kill_switch = 10000 #sim.cost_kill_switch = sim.iteration_kill_switch * sim.costs[0] sim.run()