示例#1
0
def main():
    palette.configure(False)

    print("Good target: center on %d%d%d" % (47 % 7, (47 // 7) % 7, 47 // 49))
    
    plot_dev(0)
    plot_dev(1)
    plot_dev(2)

    plt.show()
示例#2
0
def main():
    palette.configure(False)

    all_ids, mvir, rvir, mpeak, x, y, z = np.loadtxt(
        "halo_data.txt", usecols=(0, 1, 2, 3, 6, 7, 8)
    ).T
    vec = np.array([x, y, z]).T
    unique_ids = np.unique(all_ids)   # array of booleans for uniqueness
                                      # i.e. a new host halo id == True

    for j in range(5):
        plt.figure(j)
        ok = all_ids == unique_ids[j]   # SUPER HELPFUL LINE FOR CONDENSING
        plot_subhaloes(mpeak[ok], 1e12, rvir[ok], vec[ok])

    plt.show()
    """
示例#3
0
def main():
    palette.configure(False)
    
    d_indiv, n_indiv = np.loadtxt("indiv_dx_min.txt").T
    d_global, n_global = np.loadtxt("global_dx_min.txt").T
    d_rot_global, n_rot_global = np.loadtxt("global_rotation.txt").T
    d_window_indiv, n_window_indiv = np.loadtxt("rotate_window_indiv.txt").T
    d_mean_indiv, n_mean_indiv = np.loadtxt("rotate_mean_indiv.txt").T
    d_mode_indiv, n_mode_indiv = np.loadtxt("rotate_mode_indiv.txt").T
    
    plt.plot(d_indiv, n_indiv, color=pc("k"),
             label=r"${\rm individual\ (\Delta x)_{\rm min}}$")
    plt.plot(d_global, n_global, color=pc("r"),
             label=r"${\rm global\ (\Delta x)_{\rm min}}$")
    plt.plot(d_rot_global, n_rot_global, color=pc("o"),
             label=r"${\rm global\ rotation}$")
    plt.plot(d_rot_global - 2**16, n_rot_global, color=pc("o"))
    plt.plot(d_window_indiv, n_window_indiv, color=pc("g"),
             label=r"${\rm individual\ rotation\ (window)}$")
    plt.plot(d_window_indiv - 2**16, n_window_indiv, color=pc("g"))
    plt.plot(d_mean_indiv, n_mean_indiv, color=pc("b"),
             label=r"${\rm individual\ rotation\ (mean)}$")
    plt.plot(d_mean_indiv - 2**16, n_mean_indiv, color=pc("b"))
    plt.plot(d_mode_indiv, n_mode_indiv, color=pc("p"),
             label=r"${\rm individual\ rotation\ (mode)}$")
    plt.plot(d_mode_indiv - 2**16, n_mode_indiv, color=pc("p"))

    
    
    plt.legend(loc="upper left", frameon=True, fontsize=16)
    
    xlo, xhi = plt.xlim(-400, 2000)
    ylo, yhi = plt.ylim()
    plt.ylim(ylo, yhi)
    
    plt.xlabel(r"$\Delta x$")
    plt.ylabel(r"$N(\Delta x)$")
    
    n = -512
    while n < xhi:
        plt.plot([n, n], [ylo, yhi], ":", lw=1, c="k")
        n += 256
    
    plt.show()
示例#4
0
def main():
    palette.configure(True)

    file_names = [
        "profiles/phi_pts/phi_pts_4_1.25.txt",
        "profiles/phi_pts/phi_pts_4_2.5.txt",
        "profiles/phi_pts/phi_pts_4_5.txt",
        "profiles/phi_pts/phi_pts_4_10.txt",
        "profiles/phi_pts/phi_pts_4_20.txt"
    ]

    log_r, phi = np.loadtxt(file_names[0]).T
    log_r_2, phi_2 = np.loadtxt(file_names[-1]).T

    mvir = 5.112e+09
    vvir = mvir_to_vvir(mvir)
    rvir = mvir_to_rvir(mvir)

    log_r -= np.log10(rvir)
    log_r_2 -= np.log10(rvir)

    phi /= vvir**2
    phi_2 /= vvir**2

    plt.plot([-12, 5], [-12, 5], "--", lw=2, c=pc("a"))
    plt.plot(phi, phi_2, ".", c="k")

    plt.xlim(-12, 5)
    plt.ylim(-12, 5)

    plt.xlabel(r"$\Phi_{\rm true}/V_{\rm vir}^2$")
    plt.ylabel(r"$\Phi(\delta_v = 0.8 V_{\rm vir})/V_{\rm vir}^2$")

    plt.fill_between([0, 5], [0, 0], [-12, -12], color=pc("b"), alpha=0.2)
    plt.fill_between([-12, 0], [5, 5], [0, 0], color=pc("r"), alpha=0.2)

    plt.savefig("plots/fig4_vvir_boundedness.png")
示例#5
0
import matplotlib.pyplot as plt
import numpy as np
import palette
from palette import pc
import string

ls = "-"
lw = 3

palette.configure()


def gaussian(mu, sigma, x):
    return np.exp(-(x - mu)**2 /
                  (2 * sigma**2)) / np.sqrt(2 * np.pi * sigma**2)


x = np.linspace(0, 1, 100)

for c in palette.colors[:0:-1]:
    plt.figure()

    for sigma in np.linspace(0.2, 1.0, 10):
        plt.plot(x, gaussian(sigma, sigma, x), ls, lw=lw, c=pc(c, sigma))

    if c == "red":
        plt.savefig("README_images/color_range.png")

plt.figure()

x = np.linspace(-1, 1, 100)
示例#6
0
    plt.figure()

    acc = np.array(accuracies[0])

    plt.plot(np.log10(acc), dv_means, c=pc("b"), label=r"$\vec{v}$")
    plt.plot(np.log10(acc), dv_means, "o", c=pc("b"))
    plt.xlabel(r"$\log_{10}(\delta v)\ ({\rm km\,s^{-1}})$", color=pc("b"))
    plt.ylabel(r"${\rm Compression\ ratio}$")
    plt.tick_params(axis="x", colors=pc("b"))

    plt.twiny()

    plt.plot(np.log10(acc / spacing / 1e3),
             dx_means,
             c=pc("r"),
             label=r"$\vec{x}$")
    plt.plot(np.log10(acc / spacing / 1e3), dx_means, "o", c=pc("r"))
    plt.xlabel(r"$\log_{10}(\delta x / l)$", color=pc("r"))
    plt.ylabel(r"${\rm Compression\ ratio}$")
    plt.tick_params(axis="x", colors=pc("r"))

    plt.savefig("plots/fig_2b_ratio_vs_accuracy.png")


if __name__ == "__main__":
    palette.configure(True)

    main()

    #plt.show()
示例#7
0
import sys

sys.path.append("../python")

import matplotlib

matplotlib.use("PDF")

import numpy as np
import matplotlib.pyplot as plt
import palette
from palette import pc
import minh
import time

palette.configure(False)


def main():
    fname = sys.argv[1]
    f = minh.open(fname)

    for b in range(f.blocks):
        x, vx, mvir, vmax = f.block(b, ["x", "vx", "mvir", "vmax"])

        print("X", x[:3])
        print("Y", vx[:3])
        print("mvir", mvir[:3])
        print("vmax", vmax[:3])
        break
        """