示例#1
0
  def regenTree(self):
    forest=	render.findAllMatches("Tree Holder")
    forest.detach()


    bodydata=GeomVertexData("body vertices", self.format, Geom.UHStatic)

    treeNodePath=NodePath("Tree Holder")
    makeFractalTree(bodydata, treeNodePath,Vec3(4,4,7), Vec3(0,0,0),self.numIterations, self.numCopies)

    treeNodePath.setTexture(self.barkTexture,1)
    treeNodePath.reparentTo(render)
示例#2
0
  def addTree(self):

    bodydata=GeomVertexData("body vertices", self.format, Geom.UHStatic)

    randomPlace=Vec3(200*random.random()-100, 200*random.random()-100, 0)
    #randomPlace.normalize()


    treeNodePath=NodePath("Tree Holder")
    makeFractalTree(bodydata, treeNodePath,Vec3(4,4,7), randomPlace, self.numIterations, self.numCopies)

    treeNodePath.setTexture(self.barkTexture,1)
    treeNodePath.reparentTo(render)
示例#3
0
  def __init__(self):
    formatArray=GeomVertexArrayFormat()
    formatArray.addColumn(InternalName.make("drawFlag"), 1, Geom.NTUint8, Geom.COther)

    format=GeomVertexFormat(GeomVertexFormat.getV3n3cpt2())
    format.addArray(formatArray)
    self.format=GeomVertexFormat.registerFormat(format)

    bodydata=GeomVertexData("body vertices", format, Geom.UHStatic)

    self.barkTexture=loader.loadTexture( \
      "models/samples/fractal_plants/bark.jpg")
    treeNodePath=NodePath("Tree Holder")
    makeFractalTree(bodydata,treeNodePath,Vec3(4,4,7))

    treeNodePath.setTexture(self.barkTexture,1)
    treeNodePath.reparentTo(render)

    self.accept("q", self.regenTree)
    self.accept("w", self.addTree)
    self.accept("arrow_up", self.upIterations)
    self.accept("arrow_down", self.downIterations)
    self.accept("arrow_right", self.upCopies)
    self.accept("arrow_left", self.downCopies)

    self.numIterations=11
    self.numCopies=4


    self.upDownEvent = OnscreenText(
      text="Up/Down: Increase/Decrease the number of iterations ("+str(self.numIterations)+")",
          style=1, fg=(1,1,1,1), pos=(-1.3, 0.85), font = font,
      align=TextNode.ALeft, scale = .05, mayChange=True)

    self.leftRightEvent = OnscreenText(
      text="Left/Right: Increase/Decrease branching("+str(self.numCopies)+")",
          style=1, fg=(1,1,1,1), pos=(-1.3, 0.80), font = font,
      align=TextNode.ALeft, scale = .05, mayChange=True)
示例#4
0
    def renderSceneInto(self,
                        depthtex=None,
                        colortex=None,
                        auxtex=None,
                        auxbits=0,
                        textures=None):
        """ Causes the scene to be rendered into the supplied textures
        instead of into the original window.  Puts a fullscreen quad
        into the original window to show the render-to-texture results.
        Returns the quad.  Normally, the caller would then apply a
        shader to the quad.

        To elaborate on how this all works:

        * An offscreen buffer is created.  It is set up to mimic
          the original display region - it is the same size,
          uses the same clear colors, and contains a DisplayRegion
          that uses the original camera.

        * A fullscreen quad and an orthographic camera to render
          that quad are both created.  The original camera is
          removed from the original window, and in its place, the
          orthographic quad-camera is installed.

        * The fullscreen quad is textured with the data from the
          offscreen buffer.  A shader is applied that tints the
          results pink.

        * Automatic shader generation NOT enabled.
          If you have a filter that depends on a render target from
          the auto-shader, you either need to set an auto-shader
          attrib on the main camera or scene, or, you need to provide
          these outputs in your own shader.

        * All clears are disabled on the original display region.
          If the display region fills the whole window, then clears
          are disabled on the original window as well.  It is
          assumed that rendering the full-screen quad eliminates
          the need to do clears.

        Hence, the original window which used to contain the actual
        scene, now contains a pink-tinted quad with a texture of the
        scene.  It is assumed that the user will replace the shader
        on the quad with a more interesting filter. """

        if (textures):
            colortex = textures.get("color", None)
            depthtex = textures.get("depth", None)
            auxtex = textures.get("aux", None)

        if (colortex == None):
            colortex = Texture("filter-base-color")
            colortex.setWrapU(Texture.WMClamp)
            colortex.setWrapV(Texture.WMClamp)

        texgroup = (depthtex, colortex, auxtex, None)

        # Choose the size of the offscreen buffer.

        (winx, winy) = self.getScaledSize(1, 1, 1)
        buffer = self.createBuffer("filter-base", winx, winy, texgroup)

        if (buffer == None):
            return None

        cm = CardMaker("filter-base-quad")
        cm.setFrameFullscreenQuad()
        quad = NodePath(cm.generate())
        quad.setDepthTest(0)
        quad.setDepthWrite(0)
        quad.setTexture(colortex)
        quad.setColor(Vec4(1, 0.5, 0.5, 1))

        cs = NodePath("dummy")
        cs.setState(self.camstate)
        # Do we really need to turn on the Shader Generator?
        #cs.setShaderAuto()
        if (auxbits):
            cs.setAttrib(AuxBitplaneAttrib.make(auxbits))
        self.camera.node().setInitialState(cs.getState())

        quadcamnode = Camera("filter-quad-cam")
        lens = OrthographicLens()
        lens.setFilmSize(2, 2)
        lens.setFilmOffset(0, 0)
        lens.setNearFar(-1000, 1000)
        quadcamnode.setLens(lens)
        quadcam = quad.attachNewNode(quadcamnode)

        self.region.setCamera(quadcam)

        dr = buffer.getDisplayRegion(0)
        self.setStackedClears(dr, self.rclears, self.wclears)
        if (auxtex):
            dr.setClearActive(GraphicsOutput.RTPAuxRgba0, 1)
            dr.setClearValue(GraphicsOutput.RTPAuxRgba0,
                             Vec4(0.5, 0.5, 1.0, 0.0))
        self.region.disableClears()
        if (self.isFullscreen()):
            self.win.disableClears()
        dr.setCamera(self.camera)
        dr.setActive(1)

        self.buffers.append(buffer)
        self.sizes.append((1, 1, 1))

        return quad
示例#5
0
    def renderSceneInto(self, depthtex=None, colortex=None, auxtex=None, auxbits=0, textures=None):

        """ Causes the scene to be rendered into the supplied textures
        instead of into the original window.  Puts a fullscreen quad
        into the original window to show the render-to-texture results.
        Returns the quad.  Normally, the caller would then apply a
        shader to the quad.

        To elaborate on how this all works:

        * An offscreen buffer is created.  It is set up to mimic
          the original display region - it is the same size,
          uses the same clear colors, and contains a DisplayRegion
          that uses the original camera.

        * A fullscreen quad and an orthographic camera to render
          that quad are both created.  The original camera is
          removed from the original window, and in its place, the
          orthographic quad-camera is installed.

        * The fullscreen quad is textured with the data from the
          offscreen buffer.  A shader is applied that tints the
          results pink.

        * Automatic shader generation NOT enabled.
          If you have a filter that depends on a render target from
          the auto-shader, you either need to set an auto-shader
          attrib on the main camera or scene, or, you need to provide
          these outputs in your own shader.

        * All clears are disabled on the original display region.
          If the display region fills the whole window, then clears
          are disabled on the original window as well.  It is
          assumed that rendering the full-screen quad eliminates
          the need to do clears.

        Hence, the original window which used to contain the actual
        scene, now contains a pink-tinted quad with a texture of the
        scene.  It is assumed that the user will replace the shader
        on the quad with a more interesting filter. """

        if textures:
            colortex = textures.get("color", None)
            depthtex = textures.get("depth", None)
            auxtex = textures.get("aux", None)

        if colortex == None:
            colortex = Texture("filter-base-color")
            colortex.setWrapU(Texture.WMClamp)
            colortex.setWrapV(Texture.WMClamp)

        texgroup = (depthtex, colortex, auxtex, None)

        # Choose the size of the offscreen buffer.

        (winx, winy) = self.getScaledSize(1, 1, 1)
        buffer = self.createBuffer("filter-base", winx, winy, texgroup)

        if buffer == None:
            return None

        cm = CardMaker("filter-base-quad")
        cm.setFrameFullscreenQuad()
        quad = NodePath(cm.generate())
        quad.setDepthTest(0)
        quad.setDepthWrite(0)
        quad.setTexture(colortex)
        quad.setColor(Vec4(1, 0.5, 0.5, 1))

        cs = NodePath("dummy")
        cs.setState(self.camstate)
        # Do we really need to turn on the Shader Generator?
        # cs.setShaderAuto()
        if auxbits:
            cs.setAttrib(AuxBitplaneAttrib.make(auxbits))
        self.camera.node().setInitialState(cs.getState())

        quadcamnode = Camera("filter-quad-cam")
        lens = OrthographicLens()
        lens.setFilmSize(2, 2)
        lens.setFilmOffset(0, 0)
        lens.setNearFar(-1000, 1000)
        quadcamnode.setLens(lens)
        quadcam = quad.attachNewNode(quadcamnode)

        self.region.setCamera(quadcam)

        dr = buffer.getDisplayRegion(0)
        self.setStackedClears(dr, self.rclears, self.wclears)
        if auxtex:
            dr.setClearActive(GraphicsOutput.RTPAuxRgba0, 1)
            dr.setClearValue(GraphicsOutput.RTPAuxRgba0, Vec4(0.5, 0.5, 1.0, 0.0))
        self.region.disableClears()
        if self.isFullscreen():
            self.win.disableClears()
        dr.setCamera(self.camera)
        dr.setActive(1)

        self.buffers.append(buffer)
        self.sizes.append((1, 1, 1))

        return quad